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We study lattice models of two-dimensional membranes of interest in statistical 
physics. The energy functional of a membrane is expressed as a sum of terms 
proportional to the surface area of the membrane, an extrinsic curvature and an 
intrinsic curvature quantity, respectively, but we neglect excluded volume effects. 
We introduce a renormalization transformation for these models which preser- 
ves the form of the energy functional, up to nonlocal terms. Our renormaliza- 
tion group construction is used to analyze the phase diagram and the different 
critical regimes of our models. We find evidence for a crumpling transition, 
separating a regime where surfaces are "crystalline" from one where the surfaces 
collapse to branched polymers, and we find a third genuine random-surface 
regime. 
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1. I N T R O D U C T I O N  

1.1. Mot iva t ion ,  Physical Problems, Perspective 

T h e  s ta t i s t ica l  m e c h a n i c s  o f  r a n d o m  surfaces  (RS)  has  been  the  ob jec t  of  

m u c h  recent  s tudy  in c o n d e n s e d  m a t t e r  phys ics  (see, e.g., ref. 1) a n d  q u a n -  

t u m  field theory .  (2~ T h e  m o t i v a t i o n  b e h i n d  the  analys is  o f  a c o n s i d e r a b l e  

n u m b e r  of  di f ferent  RS m o d e l s  has  e m e r g e d  f r o m  inves t iga t ing  the  

f o l l o w i n g  topics.  
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1. Crystal growth, properties of crystalline surfaces. 

2. Interfaces separating different phases of a physical system, such as 
domain walls in a ferromagnet; domain wall wandering in uniaxial 
commensurate-incommensurate transitions; wetting; etc. 

3. Soap layers separating oil and water regions in microemulsions. 

4. Lipid bilayers, theory of red blood cells. 

5. Membranelike structures arising in systems of polymers. 

6. Membranes with crystalline ("tethered surfaces") or hexatic order. 

7. Statistical properties of foam. 

It should be mentioned that there are, in addition, more formal, 
mathematical reasons for the study of RS models: Many three-dimensional 
models of classical statistical mechanics, in particular spin systems, are 
secretly theories of random surfaces. The best known example is the three- 
dimensional Ising model. Another example is percolation theory. Important 
properties of bond percolation in three dimensions have been established 
by studying the dual theory of plaquette percolation, which leads to 
interesting random surface problems. 

Studies of RS models in connection with quantum field theory and 
particle physics were motivated by the following problems. 

(a) The quark confinement problem in Yang-Mills theory: As an 
attempt to understand permanent confinement, various random surface 
representations of lattice gauge theories have been proposed and exploited. 
Physically, the random surfaces arise, roughly speaking, as world sheets of 
narrowly focused chromoelectrie flux tubes. 

(b) Various random surface theories have been proposed as low- 
energy approximations to confining gauge theories (large-N gauge theory 
as a surface theory, "smooth strings," ...). 

(c) Formulations of string and superstring theories as genuine 
random surface theories; discrete approximations to string theory which 
could be studied numerically. 

Our own work on random surfaces has been motivated by most of the 
topics described above, although among our main motivations were the 
confinement problem in lattice gauge theory and the questions of whether 
there is a quantization of the bosonic string which avoids the tachyon and 
whether string theory admits a discrete approximation, comparable to the 
lattice approximation in quantum field theory, well suited for rigorous 
analytical and numerical investigations. Our and many other attempts to 
settle these questions have only been moderately successful--they are still 
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largely open, although they may have clarified some of the obstacles 
encountered in the search for a bosonic string theory without a tachyon, in 
approximating string theory by discrete RS models, and in posing the 
problem of unitarity in string theory. 

One consequence of this work may be that, in contrast to conven- 
tional field theory, which generally admits a decent lattice approximation, 
it does not appear to be possible to approximate string theory by models 
of random surfaces embedded in regular lattices (it appears to be 
impossible to find simple models of single surfaces which scale correctly, as 
a critical point is approached, and which have a Euclidean-invariant scaling 
limiO. 

In this paper we nevertheless return to our study of models of random 
surfaces embedded in a regular lattice. Physically, this is motivated by 
topics 3-7 described above. There are idealized situations in condensed 
matter physics which one expects can be described reasonably well by 
models of lattice random surfaces. But our main motivation is more mathe- 
matical: In order to guess what to expect from RS theory, it might be good 
to have some simple models at hand which can be understood in rather 
much detail and which have features that one may expect to find again 
in more complicated models. In a companion paper (3'41 we have studied 
triangulated RS models. 

There now exists a good theory of critical phenomena in spin systems, 
lattice gases, and many other physical systems which admit a field-theoretic 
formulation or a representation as gases of interacting random paths. This 
theory is the renormatization group. However, critical behavior in systems 
involving statistical fluctuations of surfaces is not yet well understood. In 
general, not even the phase diagrams of such systems are known. We there- 
fore think that it may be of interest to describe and study a class of models 
of random surfaces whose phase diagram can be mapped out with some 
precision and whose critical behavior appears to be quite accessible to 
analysis. That is the main subject of this paper. Our models are cooked up 
in such a way that renormalization group ideas can be used to study them. 
We do not pretend that we have a very detailed picture of the renormaliza- 
tion flow in our models or that the specific renormalization procedure that 
we shall devise in this paper is applicable to truly realistic models. But we 
hope our work may trigger some further developments in the direction of 
a renormalization group analysis o f  a general class of RS models. 

Roughly speaking, the models of lattice random surfaces that we study 
in this paper are defined as follows: We specify an ensemble ~ of lattice 
random surfaces. We shall focus our attention on the ensembles of planar 
and self-avoiding RS [-these ensembles are carefully defined in Section 2, 
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examples (iv) and (v)]. To each surface S t  g, we then assign a statistical 
weight 

p~(S) = exp[ - A~(S)] > 0 (1.1) 

where An(S ) is an "action" or "energy function" on d ~ and ~ is a set of 
"coupling constants." Our choice of A~ will be as follows: 

A~(S) = Aint(S) + A~xt(S) (1.2) 

where Amt(S) depends only on the intrinsic geometry of S, while Aext(S ) 
depends on the way S is arranged inside the lattice 7/a. Typically, 

Aint(S) = f12 IS] + [1; z~(S) (1.3) 

where IS[ is the area of S, and A(S) is a sum over absolute values (or 
squares) of intrinsic curvature quantities (defect angles) associated with the 
vertices of S. Such terms in the action of surfaces arise naturally in the 
study of polymerized or crystalline membranes. They were first discussed in 
ref. 5. 

It was shown in ref. 6, under some hypothesis only checked numerically, 
that if/3; = 0 and Aext( S) =- 0, the scaling limit of planar RS models with 
action given by the area is equivalent to the theory of a scalar free field. In 
the continuum limit, the surface tension diverges to + ~ ,  while the physi- 
cal mass stays finite. The same result is likely to be true if a critical regime 
is approached where /3; and the coupling constants of Aext(S ) stay boun- 
ded. (5) The intuitive reason is that the surfaces in these models collapse into 
branched polymers. Highly branched, thin surfaces have little area, hence 
small action, but enormous entropy. (This phenomen is probably related to 
the tachyon problem in bosonic string theory.) In order to suppress this 
"collapse to triviality," it was proposed in ref. 6 and discussed in more 
detail in refs. 4 and 5 to add a term [1;A(S) to the action Ao(S)-  [12 ISI and 
to approach a critical regime, where [1; ~ o% while [12 =/72([1;) ~ 0. In per- 
turbation theory for continuum RS theories, there is no term of the form 
A(S) which is renormalizable b y p o w e r  counting. This may explain why 
our proposal was largely ignored. However, in ref. 4 we have shown that, 
in the context of triangulated RS models, our proposal is well conceived 
and appears to lead to a meaningful RS theory. For models of random sur- 
faces embedded in the lattice, the proposal made in refs. 4-6 is physically 
well motivated and viable, provided the dimension of the lattice is d = 3. In 
higher dimensional lattice models, the action must involve extrinsic 
curvature terms for the physical mass and string tension to stay bounded 
in the continuum limit. 

In perturbative continuum RS theory, it has become popular to study 
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the effects of an extrinsic curvature term in the action. (~~ This term can be 
chosen to be perturbatively renormalizable, and its coupling constant is 
asymptotically free [i.e., the coupling constant in front of Ae• ) grows as 
one moves to larger distance scales]. A nonperturbative analysis of the 
effects of this term in triangulated RS models has been carried out in ref. 4. 
For lattice RS models, it will be studied in this paper. 

We choose the action to have the form 

Aint(S) =/~2 area(S) 
(1.4) 

Aext(S)=fil IE(S)] +flo 2 j~s ns(j) 

where E(S) is the set of "edges" of S (see Section 2) and [E(S)[ is the total 
length of E(S), j is a vertex of S, and ns(j) is the number of edges of S 
meeting at the vertex j. In three dimensions, the second term in Aext(S ) is 
essentially equivalent to A(S), but in higher dimensions this is not so. The 
choice of the action (1.2), (1.4) can be well motivated by studying its flow 
under renormatization group transformations (Section4) and by steric 
considerations and rigidity against bending. 

One of the main purposes of this paper is to map out the phase 
diagrams of some lattice RS models in the three-dimensional half-space of 
coupling constants {_fl=(flo, fll, f12): f12>0}, to study different critical 
regimes, and to investigate the flow of the action (1.4) under renormaliza- 
tion transformations. Briefly, our main results for the planar RS model (see 
Section 2) are as follows: 

1. There exists a convex set N ' c  {_fl: f12>0} such that the planar RS 
model is well defined and has strictly positive mass and surface tension in 
the interior of N'. (Some of these results extend to self-avoiding RS models.) 

2. The surface tension tends to zero as ON' is approached along a 
trajectory for which flo + fll --+ oo. 

3. The mass tends to 0 as 0N" is approached with fll sufficiently small 
and/~2 ~ 0 (hence/~0 ~ oo). 

4. The effective action on an arbitrary length scale has approximately 
the form (1.4), up to nonlocal, irrelevant terms. 

It follows that a sensible scaling limit of the planar RS model, where 
mass and string tension scale to zero, can be reached only by letting _fl tend 
to ~N', with fit sufficiently small and rio ~ oo. However, the scaling limit is 
most likely not Euclidean invariant (so that such models are of little inter- 
est in connection with string theory, although they are "unitary" in the 
sense established in ref. 5; but see also ref. 4). The curve cs in 0N" separating 
the part of 0N" where the mass vanishes from the part where it is positive 
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is of physical significance: cg separates two regimes where typical random 
surfaces exhibit very different behavior. Above cg, i.e., where the mass is 
positive, random surfaces are very flat, and the normals to such surfaces 
exhibit long-range order. Below cg, typical random surfaces are crumpled, 
behaving like branched polymers. We shall see that, below cg, branched- 
polymer behavior most likely disappears only in the limit where ~0 --* oe. 

Some of these results extend to models of self-avoiding random sur- 
faces. We also conjecture the existence of a phase boundary cg,, similar to 
the curve cg described above, for triangulated RS models. (The relation of 
the lattice planar RS models to the triangulated RS models is expected to 
be somewhat analogous to the relation between the two-dimensional Ising 
and two-dimensional X Y  or Heisenberg models.) A renormalization group 
analysis for triangulated RS models has, however, not been performed. It 
would be considerably more difficult, just like a rigorous version of the 
droplet argument for a transition in a classical spin system with continuous 
symmetry would be much more intricate than the Peierls argument in the 
Ising model. 

The most important new technical tool introduced in this paper is a 
real-space renormalization-group method for lattice surfaces. The basic 
idea is to regard a surface as a hierarchical structure of excitations of an 
underlying surface that consists of flat pieces. We inductively sum over all 
levels of this hierarchy and discover that an action of the form (1.4) 
reproduces itself with renormalized coupling constants up to terms which 
are expected to be irrelevant. The details of this procedure are described in 
Sections 4 and 5. 

In the next section we introduce the ensembles of surfaces we wish to 
consider and various definitions, while in Section 3 we give a precise state- 
ment of our results. Sections 5 and 8 contain a technical proof of the con- 
vergence of the loop functions for arbitrarily small values of/~2, provided 
~o and/or /~1 is sufficiently large. In Section 6 we prove (under some 
assumptions) that the mass is positive if/~1 is large. The arguments in 
Sections 4-6 are for a restricted class of surfaces and in Section 7 we show 
how to extend them. 

Section 8 contains a combinatorial estimate of the number of surfaces 
with a given area and a given number of corners. This estimate gives the 
strongest bounds on the critical surface ~ and does not rely on the 
simplifying assumptions of Sections 4-6. 

The main technical ideas of this paper are described in Sections 4 and 
5. Sections 6 and 7 contain auxiliary material, while Section 8 contains a 
fairly remarkable, but complicated combinatorial construction, whose 
purpose it is to improve the results obtained by the methods of Sections 4 
and 5. 
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2. D E F I N I T I O N S  OF R A N D O M  S U R F A C E  E N S E M B L E S  

A model describing the statistical mechanics of a single lattice random 
surface is defined as follows. 

(I) We choose an infinite, regular lattice, in this paper=7/a,  and 
specify a countable ensemble g of lattice random surfaces. More precisely, 
g is a countable family of two-dimensional, connected cell complexes, built 
by gluing together elementary lattice 2-cells, in our case plaquettes, along 
common edges. Elements of d ~ i.e., random "surfaces," are denoted by S. 

(II) To every S~do one assigns a positive statistical weight pp(S), 
where fl is a family of parameters ("coupling constants") on which the 
weights p~(S) depend. Usually, p#(-) is defined to be invariant under 
Euclidean motions which leave the lattice invariant; (lattice translations 
and lattice rotations). The weights p_~(. ) define a measure on do, P~, which 
usually is infinite. Information about  typical behavior of random "surfaces" 
in do with respect to P# is retrieved by calculating the P~ measure of 
appropriate subsets of do. Examples will be given below. 

Examples of ensembles do are: 

(i) Graphs of integer-valued functions on connected subsets A of the 
dual of the two-dimensional lattice 7/2 viewed as two-dimensional, connec- 
ted surfaces embedded in 2 3. This ensemble is useful for the description of 
surfaces of crystals or of interfaces in the solid-on-solid approximation. 
It has been used widely in studies of the roughening and wetting 
transitions (11'12) (for recent rigorous results see ref. 13). 

(ii) Connected clusters of (singly) occupied plaquettes in 7/a. They 
are studied in connection with Bernoulli plaquette percolation and q-states 
Potts gauge theories in the Fortuin-Kasteleyn representation. (=) 

(iii) Connected clusters of multiply occupied plaquettes in 7/d with 
the property that every link (=  bond = pair of neighboring sites) of every 
plaquette of such a cluster is also a link of at least one further plaquette of 
the cluster. Two plaquettes in such a cluster may, geometrically, represent 
the same plaquette of Z a, which is then at least doubly occupied. Thus, a 
cluster in this ensemble is an assignment of a nonnegative integer n(p) to 
each plaquette in 7/a, with the property that if n ( p ) > 0 ,  then either 
n(p) ~> 2, or, if n(p) = 1, there is a plaquette p' 4= p, with n(p') >~ 1, sharing 
a link with p. We also require that 

~, n(p) < ~ (2.1) 
p c Z  d 

for all clusters in the ensemble. 
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This ensemble is of interest in statistical theories of certain ternary 
mixtures and foam structures. 

(iv) Self-advoiding random surfaces. By a self-avoiding random sur- 
face we mean an assignment of a number n(p) ~ {0, 1 } to every plaquette 
p of 77 d such that either n(po) = 1 for some Po c 7/d and n(p) = 0 for all 
P ~ Po (surface consisting of a single plaquette, P0), or, if n(p) = 1, then 
there exists a plaquette p'#p, with n ( p ' ) =  1, sharing a link with p. 
Moreover, for any link b c 77 d (i.e., a nearest-neighbor pair of sites in 7/d), 

Z n(p)~<2 (2.2) 
p:Op~ b 

where 0p denotes the set of boundary links of the plaquette p. The 
boundary of a self-avoiding random surface S with occupation numbers 
{ns(p)}p=~,~ is defined as 

OS={bcZd: ~ ns(p)=l} (2.3) 
p:Op~ b 

(v) Connected orientabte random surfaces of genus 0, which are 
called "planar RS. ''(6) A planar random surface (PRS) S is defined as 
follows: It is a two dimensional, connected, orientable cell complex Z,  
where the elementary 2-cells are squares, together with an imbedding 

i: ~ ~ Z d (2.4) 

such that the elementary two cells in Z are mapped into plaquettes in Z d, 
the elementary l-cells are mapped into links in 7/d, and the elementary 
0-cells are mapped into points in 77 d. Furthermore, the cell complex ~2 is 
required to have the topology of a sphere or that of a sphere with a 
number of holes. The statement that Z is connected means that for any 
pair (p, p ')  of 2-cells in ~2, there is a sequence of 2-cells in Z ,  P 1,..., P,  such 
that pl and p share a 1-cell in their boundaries and the same applies to the 
pairs (p , ,  p ' )  and (Pi, Pi+ 1), i =  1 ..... n -  1. The boundary of S, denoted OS, 
is the image of the boundary of ~2 under the mapping i, i.e., 8S consists of 
those 1-cells in S that belong to the boundary of a single 2-cell. 

This definition of planar random surfaces may look complicated. In 
more cavalier jargon, it goes as follows: A connected planar RS is a collec- 
tion of copies of plaquettes in 77 d whose links are glued together pairwise 
in such a way that the resulting complex is a connected, orientable surface 
with the topology of a sphere, or of a sphere with holes. 

We now proceed to discuss examples of weights pp(S) of "surfaces" in 
one of the ensembles specified above. For  this purpose we introduce some 
further notions and notation. 
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Let P(S) denote the set of all two-cells (copies of plaquettes in 2U) 
which belong to a random surface S, L(S) the set of all one-cells (copies 
of links in 7/a) belonging to S, and V(S) the set of all vertices (copies of 
sites of 7/a) in S. Every element in L(S) belongs to the boundary of one or 
more elements of P(S), and every element in V(S) belongs to the boundary 
of two or more elements of L(S). Two adjacent links of a plaquette in P(S) 
share one common vertex in V(S). If two plaquettes of P(S) are glued 
together along an edge ~, then corresponding endpoints of the copies of 
in the boundaries of those two plaquettes are identified as elements of 
V(S), under the gluing. [-However, if bl and ~2 are two distinct elements of 
L(S) which are copies of the same link in 7/d, their corresponding endpoints 
may (or may not) be distinct elements of V(S).] 

The notions which we shall now discuss have a precise mathematical 
meaning for ensembles of types (i) (solid-on-solid surfaces), (iv) (self- 
avoiding random surfaces), and (v) (planar random surfaces), but require 
some modifications for the other ensembles, (ii) and (iii), discussed above. 
Given a vertex jE V(S), let O*j be the collection of all those one-cells which 
are distinct elements of L(S) and contain j in their boundary. We define 
the intrinsic curvature (deficiency index) 6(j) of a random surface S at a 
vertex j e  V(S) by 

6(j) = 4 -  #~3*j (2.5) 

where #A denotes the cardinality (number of elements) of a set A. The 
number 4 on the rhs of (1.5) is due to the fact that in a two-dimensional 
coordinate plane of Z d at most four plaquettes can share a common vertex. 
The Euler characteristic of S is given by 

z (S )=  # P ( S ) -  #I4S)+ # V(S) 

= 2 - 2h(S) - c(OS) (2.6) 

where h(S) is the number of handles (or genus) of & and c(3S) is the 
number of connected components of ~?S. [-For planar surfaces, h(S)= 0.] It 
is not hard to prove (s) 

6s(j) = 4z(S) + I~SI (2.7) 
j e  v (s )  

where I~SI is the number of elements in L(S) that belong to 3S, i.e., the 
length of QS. This is the Gauss-Bonnet identity for lattice surfaces. 

The cardinalities of P(S), L(S), and V(S) and the curvature 6;(S) of 
a random surface S at a site j~ V(S) are intrinsic notions, defined for 
abstract, two-dimensional cell complexes without reference to how they lie 
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in the lattice Z d. Next, we define some extrinsic notions referring to how S 
is arranged inside 77 d. 

Let ~; ~ L(S). Since we are working with self-avoiding or planar RS, 
belongs to the boundary of only one or two plaquettes in P(S). If it 
belongs to only one plaquette of P(S), it is in the boundary OS of S. If it 
belongs to two plaquettes/3 and/3' of P(S), then we may distinguish three 
cases: 

(a) /3 and/3 '  are copies of two distinct plaquettes p and p'  which lie 
in a common, two-dimensional coordinate plane of 7/d. 

(b) /3 and P' are copies of two distinct ptaquettes p and/3 '  which lie 
in different, two-dimensional coordinate planes of 2d. 

(c) /3 and /3' are oppositely oriented copies of the same plaquette 
of Z d. 

In cases (b) and (c) we call ~ an edge link of S. The edge links of S 
make up a graph in Z d which we denote by E(S). More precisely, E(S) is 
the collection of all edge links in S together with the connectedness proper- 
ties they inherit from S, i.e., two edge links in E(S) are connected if and 
only if they share a vertex in S. It is also convenient to adopt the conven- 
tion that boundary links are edge links. 

A vertex j ~ V(S) is called a corner if more than two edge links meet 
at j or if two edge links meet at j at an angle different from re. We leave 
it as an easy exercise for the reader to check that 0*j never contains a 
single edge link. 

An edge of S is a maximal connected subset of E(S) containing no 
corners in its interior. If follows that an edge is contained in a lattice line 
and terminates at a corner. 

An edge network is a maximal connected subset of E(S). We frequently 
abbreviate edge network by network. 

We denote by C(S) the collection of all corners in S, including the 
corners of 0S. If j e  C(S), there meet ns(j) edges at j, where ns(j)~> 2 is 
called the order of the corner j. 

We are now prepared to define the statistical weights of the random 
surfaces in the ensembles d o described in (i), (iv), and (v) above. We 
introduce the following notation: 

ISI = #P(S) = area of S 

IE(S)I = #E(S) 

N(S) = 1  ~ ns(j) 
2 j ~  C(S) 

(2.8) 

(2.9) 

(2.10) 
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Thus, IE(S)I is the number of edge links, and N(S) is the number of edges 
or alternatively the number of corners in S counted with multiplicity. We 
shall also use the notation N(E) for N(S) if E =  E(S). 

Let ~ = (/30,/3~,/32) e N3. If S t  ~, we define the action (or bare action) 
A~(S) of S by 

A~(S) ~/32 I SI + / ~  Ig(S)l + ~3oN(S) (2.11) 

The coupling constant /32 is always nonnegative, while /30 and /~ may 
become negative; see Theorem 1 below. The statistical weight of S is given 
by 

pp(S) = exp [ - A B(S)] (2.12) 

Our purpose is to study the physical properties of the RS model with 
the ensemble g specified in (v), with the statistical weight defined in 
(2.8)-(2.12). Some of our methods also apply to the other ensembles 
described above. This will be briefly described in Section 7. 

Rather than working with the ensemble (v) of planar random surfaces, 
it is convenient, for the purpose of explaining the renormalization group 
method, to introduce a somewhat smaller ensemble of surfaces, which we 
now describe. Let S be a planar random surface. S is said to be fiat if it 
contains no edge links in its interior. A face of a planar random surface is 
a maximal connected flat subsurface. If F is a face of S, it follows that 
OF~_ E(S) and F lies in a coordinate plane. 

It is not hard to see that a face of a PRS has the topology of a disc 
or that of a disc with a number of holes. The boundary of any face is a 
union of loops. A face of a surface is simple if all its boundary components 
are simple loops, i.e., self-avoiding. A surface is said to be simple if and only 
if all its faces are simple. 

We define ensemble (vi) of simple PRS to consist of all the simple 
surfaces in ensemble (v). 

All the results described in the next section are valid for ensemble (v), 
while the proofs given in Sections 4-6 are for ensemble (vi). In Section 7 we 
describe the modifications of the RG method required for nonsimple 
surfaces. 

We conclude this section with a comment on the geometrical meaning 
of the term N(S). (This is of interest in connection with the proposal made 
in refs. 5 and 6.) 

It is not hard to see that 

2 ~< n(j) ~<4+ f~(j)[ (2.13) 

But while in three dimensions, i.e,, for surfaces embedded in Z 3, 16(J)l is 
positive for every corner j~  C(S), this is not so in four or more dimensions: 
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For d>~4, there are, for example, corners j of order n ( j ) = 4  for which 
6(j) = 0. [Consider the origin in 77 d, d~> 4, and glue together the plaquettes 
(12), (13), (24), and (34) attached at the origin. Then n(0)=4,  while 
6(0) = 0.] Therefore, a term/3~ A(S), with A(S)= Zj~ v~s~ ]6(j)l (ree ref. 5), 
in the action is much less coercive than then term ~3oN(S) chosen in (2.11) 
and is presumably not sufficient to avoid a "collapse to triviality" of the 
model if d~> 4. (This is in contrast to the situation met in triangulated RS 
models. ~3'4)) However, in three dimensions, the t e rms /~  A(S) and j~oN(S ) 
play equivalent roles. The results proven in this paper for the action 
defined in (2.11) are also Valid for an action where ~3oN(S) is replaced by 
/3'oA(S) if d =  3. In order not to have to distinguish between d =  3 and 
d~> 4, we shall work with the action (2.11), but we emphasize that, in the 
physical dimension d =  3, defect angles are covenient and physically 
plausible parameters. 

3. R E S U L T S  

In order to study physical properties of an RS model one must ask 
appropriate questions about the behavior of typical random surfaces. The 
most elementary questions are of combinatorial nature. 

(a) Consider, for example, the quantity 

n ~ ( A ) =  # { S e g ;  ISI =A,  ~s=50} (3.1) 

where 50 = 501 w -.- w &a n is a finite union of lattice loops. For the ensem- 
bles (ii)-(vi) described in Section 2, one may show that 

nze(A) = exp[/3(Z)A + o(A)] (3.2) 

for some /~2~ independent of 50. Numerical results ~14) indicate that, for 
planar random surfaces and 5 ~ = Op, the boundary of a plaquette, 

nop(A) A ~ A~~ (3.3) 

with eo"~ -1.5 (within 10%, for d =  3). It has been shown in ref. 6 that if 
eo ~>-2,  then e o = - 1 . 5  for planar random surfaces in arbitrary dimen- 
sion d. [-Throughout this article, f (A)~A,oo  g(A) means that there are 
finite, positive constants cl and c2 such that, for A large enough, Cl g(A)<~ 
f (A)  ~ c2 g(A).] The equation eo = -1.5 plays a key role in our analysis of 
the collapse to triviality, for /3o =/31 -- 0, presented in ref. 6. The exponent 
eo is not known exactly for any of the other ensembles defined in Section 2. 
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(b) In this paper we shall require bounds on the quantities 

n ~ ( A , E , N ) = # { S ~ g :  ]SI=A, IE(S)I=E,]N(S)I<~N, O S = ~ }  (3.4) 

for the ensemble of planar RS. 
We shall prove that, for every ~ > 0, there exists a convex region ~ ,  in 

the (flo, ill) plane containing the intervals 

Io=  { (flO, fll): fll --=O, B~ < fl~ < oo } 

Ii  = { (flO, fll): fl~ Ol(~) < fll < oo } 

for some finite constants B~ and B~(e), such that for (flo, f l , ) e ~ ,  

n~(A, E, N) <~ e ~A +13~e+~~ (3.5) 

This combinatorial result is proven in Section 8. 

(c) Loop correlations are defined by 

Gp(~l ..... ~9~ = ~ e x p [ - A s ( S ) ]  (3.6) 
S ~ d  ~ 

6 3 S _ _ ~ 1 U  . . .  ~ ~  n 

where ~ ,..., Lf, are loops in Z a. 
Let 7L, r be a rectangular loop in a lattice plane with sides of length L 

and T. We define the "string potential" V~(L) by 

1 
V~(L) = lirnoo - -~ log G~(TL, r) (3.7) 

and the surface tension z(_[l) by 

1 
~(fl)= lim (3.8) 

An inverse "linear extension" or mass m(fl) is given by 

m(_fl) = lim _ 1  log G~(@, Op,) 
a ~ o o  a 

(3.9) 

where @,  is a copy of @ translated by a lattice units in a lattice direction. 
It is easy to see that m(fl) -1 is a measure for the mean linear extension of 
random surfaces (or random "bubbles"). The existence of the limits in 
(3.7)-(3.9) for planar random surfaces is proven in ref. 16 for a special 
model (fl0=fll =0) ,  but the arguments in ref. 16 extend to the more 
general models studied in this paper. 
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We define a susceptibility (or better: specific heat or mean area) Z(~) 
by setting (see ref. 6 for details) 

= 

~ ~ ISI exp[- -A~(S)]  (3.10) 
Seg 

O S =  Op 

All the results summarized below are results for the simple planar 
random surface model whose action is given by (2.11). Many of our results 
extend to self-avoiding random surfaces (SAS), some also to foam models 
[-ensemble (iii)]; see Section 7. 

We now state our basic results. 

T h e o r e m  1. There exists a convex, open region M c  { ~ : f 1 2 > 0 )  
such that, for all _//e M, the loop correlations G~(Se 1 ..... ~ , )  defined in (3.6) 
are well-defined, finite quantities. 

Let (/~0,/~l,/~2(/~0,/~I))E ~3~. Then /~2(/~o,/~1) is a positive, monotone 
decreasing, convex function of/~0 and/~1, and 

if/~o or fll tends to ~ with (/~o,/~1, ~2) ~ ~3~. 

This theorem--which extends to some SAS models--is obviously 
closely related to the bound (3.5), and in fact follows from it. Its proof is 
also a consequence of the renormalization group analysis performed in 
Sections 4 and 5. 

Our next result says that, for the PRS model, critical behavior can 
only occur on ~ .  

Theorem 2. For  ~ ,  

r(fl) > 0, m(_fl) > 0, Z(fl) < 

and all the moments 

= [Sl'exp[-A~_(S)], n = 0 ,  1,2 .... (3.11) 
SEs 

a S  = Op 

are finite. 

Except possibly for the positivity of r, this result also holds for SAS 
models. Precise statements and proofs have been given in ref. 16 for the 
case /~o =/~t = 0. Those arguments extend without difficulty to the present 
situation. Some of these extensions are described in ref. 8. 
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(d) We consider the notion of critical exponents. In order to discuss 
critical properties and continuum limits of the PRS models, we must, 
according to Theorem 2, study the behavior of these models as 
approaches 8N'. We say that a trajectory f l ( t )cN' ,  with t e(0,  1] and 
fl(0) ~ ON', approaches 8N" transversally iff 

and 

I/~i(t)[ ~< Kfl2(t), i = 0, 1 (3.12) 

x '  <<. ~ ( t )  <<. I(" (3.13) 

for some finite constants K, K', and K" independent of t. [Here 
fl(t) =- (d/dt) fl(t).3 

Our next result is the following theorem. 

Theorem 3. (i) For _fl~ON" with fie, fll finite 

G~(~)  < oo 

for an arbitrary loop 2, ~ (e.g., LP = @) in 7/a. 

(ii) If fl(t) approaches 8N" transversally, then 

)~(_fl(t)) ~< c o n s t / ~ -  

Theorem 3, part (i), follows by the arguments used in the proof of 
Lemma 2.1 in ref. 6, and part (ii) follows by the arguments developed in 
Section 3 of ref. 5. It is worthwhile remarking that (i) follows from (ii) (see 
also ref. 15). 

In order to study the critical behavior of the PRS model in bounded 
regions of 0N', it is convenient to introduce the following quantity: 

nw(A; fie, i l l)= E 
S e g  

ISI = A  

e x p [ - f l l  IE (S) f - f loN(S) ]  (3.14) 

By Theorem 1 there exists a finite, positive constant/?(2) = fl(2)(flo, 131) such 
that 

and 

(/~o,/~1, p(2~) ~ 0N" 

n~(A; fie, ill) A Z ~  exp[fl(2)A + o(A)] (3.15) 

For the details of a subadditivity argument of this type, see ref. 16. 
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Under appropriate assumptions on n ~ ( A ;  flo, ill), one can define an 
exponent e = e(flo,  i l l )  by 

A~e 312~A (3.16) n~e(A;  flo, i l l )  A ~ 

This exponent is the analogue of e o and plays an important role in the 
analysis of the models with flo and fll bounded. 

We define critical exponents y, v,/t, and ~/as follows: 

and 

Z(fl(t)) ~ t ~, m ( f f ( t ) )  ~ t ~ 

dz(_f l( t)) /dt  ~ U 1 

(3.17) 

(3.18) 

(3.19) G~co(~P, ~P~)~. .a  -~a- 2 + ~) 

for 1 ~ a  <rn(_fl( t)) ,  t ~ O .  
If these exponents exist, then, under some standard scaling hypotheses, 

one can show that 

= v(2 - ~t), v = �89 (3.20) 

Moreover, if _~(t) approaches aM transversally, then 

7 = 2 + e  (3.21) 

See refs. 6 and 7 for proofs. 
Let 6~ be the subensemble of the ensemble g of planar random 

surfaces, consisting of planar surfaces which do not contain any loops of 
length 2 made of two distinct copies ~, ~' of a link b = 7/a glued at the 
endpoints (i.e., with endpoints identified). The results discussed above for 
the simple PRS model extend to the model with ensemble 6oo, called the 
PRS0 model. In particular, the loop correlations of the PRS 0 model are 
finite in a convex, open region Mo ~ M. Given fl0 and fix, let fl~o2)(flo, i l l )  be 
such that (fl0, ill, fl~o2)(flo, ill)) ~ 8M0. Clearly fl~02) ~< fl~%, and it is easy to see 
that fl~o2)> 1fl(2).(6) Quantities referring to the PRSo model receive a sub- 
script zero in the following. It is plausible that the PRS and the PRS0 
models belong to the same universality class; see ref. 6. The proof of the 
following theorem follows from the methods developed in refs. 6] 8, and 9 
(for a review see also ref. 15). 

T h e o r e m  4. Suppose that the susceptibilities ;~(fl(t)) and Xo(fl0(t)) 
diverge as fl(t) and _~o(t) approach aM and aM 0 transversally, respectively. 
Then 

e=  -1.5, y = � 8 9  v=�88 q = 0  (3.22) 

z(_~(0)) > 0 (3.23) 
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and the continuum (-- scaling) limit of G#(@, @')  is the propagator of a 
free, scalar field. 

The exponents (3.22) are the mean-field exponents (d-- ,oo) of 
branched polymers. The hypotheses of Theorem 4 have been tested numeri- 
cally in ref. 14 for flo = fl~ = 0 (see also ref. 17 for related numerical work). 

Next, we show that on trajectories #(t) which tend to oo as t ~ 0, a 
different critical regime can be reached. 

T h e o r e m  5. Let _fl(t)e~, t~(0 ,  l ]  be a path in ~ such that 
flz(t)+O as t J, 0. Then 

lim r(_#(t)) = 0 (3 .24)  
t ~ O  

If i l l ( t ) = 0  for t e  [0, 1), then 

lim m(#(t)) = 0 (3.25) 
t ~ 0  

The existence of paths in N' with fl2(t)+ 0 follows immediately from 
Theorem 1. In order to prove (3.24), let SL be the unique flat surface with 
boundary ~' L,C" Clearly, A#(SL)= f12 L2, SO 

G#(YL.L)>e #2L2 (3.26) 

which implies (3.24). Similarly, considering a long, thin cylinder, 

G#(Op, @a) > const- e-2f12a- 2flla 

from which (3.25) follows. 
The above theorem tells us that if #o ~ 0% #1 ~ 0, and f12 -~ 0 a critical 

regime is reached where both the mass m(_fl) and the surface tension z(fl) 
tend to 0. Our estimates are, however, not sharp enough to show that 
m2(_fl)/z(fl) tends to a preassigned, finite value as fl tends to ~ in a 
suitable way, with/3o -~ ~ and f12 -~ 0. 

The next result will show that it is likely that z(fl)/mZ(fl) can be made 
to reach a finite value, although possibly = 0, if fl tends to ~ in a suitable 
way, with flo ~ ~ and flz -~ 0. We call this result a quasitheorem, since we 
only have a partial proof for it (see Sections 4 and 6). 

O u a s i t h e o r e m  6. There exists a curve c g c ~ c ~ { f l :  f l l~Bl} ,  
where B1 is a finite constant such that if _fl(t) is a trajectory in ~ reaching 
~ above the curve c#, as t "~ 0, then 

lira m(fl(t)) = m(fl(0)) > 0 (3.27) 
t ~ O  
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In particular, if fl with/~1 ~ oe, so that/~2 -~ 0, then 

r(_/3) ~ 0 while m(_/3) ~ oe 

It should be quite straightforward to test the predictions of this 
quasitheorem numerically. 

It can be argued that the part ~3~+ of ~N above the curve cg contains 
a second phase boundary cg, such that typical surfaces contributing to 
G~(TL, L) as L becomes large are rigid if _~ tends to 0~  above oK,, while they 
are rough if ~ tends to ~ between cg and ~ '  (i.e., there is a roughening 
transition in this model). 

(e) For the sake of completeness, we briefly recall the definition of 
the radius of gyration of random surfaces and its critical exponent, which 
is related to their Hausdorff dimension, the recurrence exponent, and a 
correlation which is a measure for orientational order. We define 

d(S) = max{dist(p, p'): ~3S= @, p' E P(S)} 

where dist(A, B) is the minimal Euclidean distance between elements of a 
set A c ~a and of a set B c ~a. We define quantities 

Rn(_13)= ~ d(S) n e x p [ - A s ( S ) ]  (3.28) 
S E g  

OS = Op 

The definition of Hausdorff dimension 6 of a random surface S (see refs. 6, 
7, and 15) suggests that 

d(S) Isl'~ 0o [SI 1/a (3.29) 

Hence, 

R.(~)- ~ ISl n/~ exp[-A_p(S)] (3.30) 
S r  

OS = Op 

By (3.16) 

R,(~_)~ ~ A~+n/~e . . . . .  t(/32 ~'2')A (3.31) 
A = I  

Hence the critical exponent Pn of R,(~) is given by 

p~= 1 + ~ + n/6 (3.32) 
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The mean radius of gyration r(fl) is defined by 

r(~_ ) ~ R .  +1 (~)/R~(_~) 

(1~2 - -  fl(2)) --1/6 ( 3 . 3 3 )  

i.e., its critical exponent is 1/3. It has been argued in refs. 6 and 7 that 

1/6 = v (3.34) 

Hence, in the branched polymer regime, 

3 = 4  (3.35) 

by (3.22). By calculating the intersection probability of two independent, 
noninteracting branched polymers in Z ~ and showing that it tends to zero 
for d>~ 8 while it remains positive in d <  8, it has been proven in ref. 18 that 
(3.35) is indeed correct within the branched polymer regime. 

If fl approaches r above the curve cd, we expect the ansatz (3.17) to 
break down, and the exponents v, 7, 6 are not expected to be defined; the 
quantities Rn(ff) are likely to remain finite. The exponent # may be defined, 
but the proof of the scaling relation v = #/2 breaks down. In any event, 
above the curve ~g, typical surfaces bounded by a loop 3'L,L must be 
expected to be smooth (or rough), but strictly two-dimensional objects, as 
L ~ Go, in the sense that 6 = 2. 

The value of 6 in the regime fl ~ ~M, /~1 = 0, flo ~ ~ ,  is not known, 
but is likely to stay below 4. 

Denoting by IISH the total number of distinct plaquettes of 2 d 
belonging to a surface S e g, we may define the recurrence exponent cr by 

ISI ~ s ~  IISIl~' s e g  (3.36) 

Of course, for self-avoiding random surfaces, e = 1, but for planar surfaces, 
~ >  1, for d < 4 ,  within the branched polymer regime. Some relation 
between e and the exponent e and a lower bound on ~, 

~> max(6/d, 1) (3.37) 

are derived in ref. 15; see also ref. 7. One expect's that 

cr for d < 6  

cr for d > 6  

and 

ISI r s ~  IISII (logllSll) ~ for d = 6  

822/55/1-2-4 
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for some ~c > 0. (Similar results are known to be true for simple random 
walks in 7/d.) 

Finally, we consider the orientational order of typical surfaces. Let  p 
and p '  be two plaquettes in P(S), S t  g. We define 

f l if p and p '  are parallel 
(i.e., they lie in the same plane 

i(p, p')  = and have the same orientat ion)  

otherwise 

For  p and p '  in P(S), let D(p,p') be the distance between p and p '  in the 
intrinsic metric of S [i.e., D(p, p') is the minimal number  n of plaquettes, 
Pl ..... Pn, in P(S) such that  Pl = P, P, = P', and Pi, Pi+ 1 are glued together  
along a c o m m o n  link, for all i =  1 ..... n - 1 ] .  A measure of orientat ional  
order  is the expectat ion 

Ep(i(p, p')[D(p, p') = a) 

=- G~(@) -I ~ ~ i(p, p') expl--A_~(S)]  (3.38) 
S c ~  p ' c P ( S )  

OS--ap D(p ,p ' )=a  

We are interested in the asymptot ic  behavior  of this quanti ty as a becomes 
large when _~ reaches a~), for it measures orientat ional  order  and is suitable 

C 

Fig. 1. The part of the critical surface 8N" in ~ >  0, i = 1, 2, 3. The roman numerals refer to 
different critical regimes as described in the text. The curve ~ separates region I from region 
II. The bold lines are the intersection of ON' with the coordinate planes. 
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for numerical studies. If (3.38) does not tend to zero as a ~ 0% we say there 
is orientational order. 

Our findings (partly heuristic and partly rigorous) are summarized in 
Fig. 1. We have the following regimes: 

I. Branched polymer regime (below cg): m(~) tends to zero, r(~) 
stays positive, no orientational long-range order. 

II. "Solid-on-solid" regime (above off): m(~) stays positive, orienta- 
tional order for surface bounded by a planar loop. 

III. Regime where m(~) and r(fl) tend to zero (genuine "surface" 
regime). 

IV. Regime where r(~) tends to zero, while m(fl) diverges. 

off, indicates a region where a roughening transition might be observed 
as one moves from high to low values of ill- Note that regimes III and IV 
are at infinity in coupling constant space. 

4. T H E  RG C O N S T R U C T I O N  A N D  T H E  E F F E C T I V E  A C T I O N  

In this section we introduce the notions, notation, and machinery 
necessary for the decomposition of surfaces into a hierarchy of networks 
and explain the basic renormalization group step. We specialize to the case 
of surfaces with one boundary component. The changes that are necessary 
for the surfaces with two (or more) boundary components are explained in 
Section 6. At the end of this section we discuss the effective action obtained 
after carrying out renormalization and show that/31 always increases as the 
scale is increased. 

Let g denote the ensemble (vi) of simple planar random surfaces. This 
is a convenient ensemble for describing our RG method. The extension to 
the full ensemble of PRS surfaces is in principle straightforward but 
notationally complicated and is discussed, together with some further 
generalizations, in Section 8. Throughout Sections 4-6, all surfaces are 
assumed to belong to & 

Let S ~ g  with O S = ~ ,  where ~ is a loop, and denote by Eo the 
network in S that contains 5C It is possible that Eo = ~ .  

We shall call E 0 the base network of S or the network at level O. Let 
F~ ..... F,  be the faces of S whose boundaries share links with E o. These 
faces are called faces at level O. Let F be one of the faces at level 0, and sup- 
pose its boundary consists of k loops ~1 ..... 2~o. One of these loops, 5r say, 
is the exterior boundary of  F, meaning that s cannot be removed from 0F 
by filling a hole in F. The other boundary components of F (if such exist) 
5r L~~ form the interior boundary of F and disappear if the holes they 
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bound are filled; see Fig. 2. We shall use the notation 6qextF=Lq(' 1 and 

0intF=~d'2u --. C) ~-cak. 
Next we show that F shares exalctly one of its boundary loops with 

E o. Since c3F intersects E o and Eo is connected, 8Fc~ E 0 contains at least 
one loop. If we cut S along this loop, it becomes disconnected, since it is 
planar, and therefore aFc~ E 0 cannot contain another loop, because Eo is 
connected and entirely contained in one of the two components that S has 
been separated into. 

A face F is said to be of type 1 if OextF_ c Eo. Otherwise F is of type 2 
(see Fig. 3). Now we are ready to define what we mean by networks at 
level 1. Let F be a type 1 face at level 0. Let C3intF= ~'a 1 U . - -  W ~ n ,  where 
the ~ .  are loops. Each of the loops ~.  is contained in some network E~ va E0 
and Ei # Ej, if i r j, since S is planar, by a similar argument as before. The 
networks E1 ..... En are said to be at level 1. 

Next, let F be a type 2 face at level 0. Then there is a network E '  # Eo 
such that 63extF_____ E'.  We say that the network E '  is at level 1, but the other 
networks that may be attached to the boundary of F (in addition to Eo and 
E ' )  are at level 2. 

We now give an inductive definition of networks and faces at any level 
k ~  N. Suppose we have defined networks and faces at levels ~<k in such a 
way that the subsurface Sk of S consisting of faces at levels ~<k glued 
together as in S is topologically a sphere with holes and the connected 
components of 0Sk different from 0S are either interior boundary com- 
ponents of faces at level k - 1  or boundary components (interior or 
exterior) of faces in Sk at level k. The networks at level k + 1 are those 

Fig. 2. A face F with exterior boundary ~ and interior boundary 502 u ~3 • 5~ . 
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which ei ther  con ta in  a b o u n d a r y  c o m p o n e n t  of  OSk which is the exter ior  

b o u n d a r y  of a face at  level k or  an in ter ior  b o u n d a r y  c o m p o n e n t  of  a face 
at  level k or  k - 1  whose exter ior  b o u n d a r y  is no t  in ~Sk (but  in the 
in ter ior  of  Sk). 

The  faces at  level k + 1 are those faces in S whose b o u n d a r y  intersects  
a level-(k + 1) ne twork  but  no t  a lower-level  ne twork .  I t  is readi ly  seen that  
the surface Sk+ ~, consis t ing of all faces at  level ~<k + 1, is aga in  a topo log i -  

El 

(a) 

(b) 

Fig. 3. (a) A type 1 face F at level 0, with two networks E 1 and El' at level 1 attached. 
(b) A type 2 face F at level 0. The face F intersects a unique network E I at level 1 and, in the 
case depicted here, two networks, E 2 and Ed, at level 2. 
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cal sphere (with holes) satisfying the properties we assumed for Sk. Note 
that networks connected to boundary components of aSk that are interior 
boundary components of faces whose exterior boundary lies in aSk are at 
level k + 2 by the above definition, 

A face at level k is a type 1 face if its exterior boundary is contained 
in a level-k network; otherwise the exterior boundary of the face is con- 
tained in a level k + 1 network and the face is said to be of type 2. See 
Fig. 4. 

The hierarchical structure of surfaces which we want to exploit should 
now be manifest. We say that a surface S has rank n, denoted r(S) = n, if 

~level  k + l  - ~  

leve I k 

(a) 

/•level k ~'~ 
(b) 

Fig. 4. (a) A type 1 face at level k. (b) A type 2 face at level k. 



Lattice Models of 2D Membranes 53 

the highest nonempty level of networks in S is number n. If r (S )=  n, we 
define Pk(S) for any k ~< n -  1 to be the subsurfaces of S consisting of all 
faces at levels ~<k. This is the surface S~ considered before. If k t> n, it is 
convenient to define Pk(S)=  S. We say that two surfaces S and S' are 
identical up to level k if and only if 0 S =  0S' and P~(S)= Pk(S'). In each 
equivalence class of surfaces that are identical up to level k, we fix, for later 
use, an ordering of the faces at each level ~<k. 

We now introduce a concept that will be important in the subsequent 
discussion: labeled networks. Roughly speaking, a labeled network J~ is a 
network E together with instructions for constructing a unique surface S 
with E ( S ) =  E. Consider a network E contained in a surface S. We fix an 
arbitrary labeling el(j),..., e ,( j)  of the edges of E that meet at any corner 
j ~  E. Note that every edge carries two labels, since it joins two corners. At 
each corner j we have a reordering eil(j ) ..... eio(j) of the edges meeting at L 
determined by the condition that %(j )  and e~,+~(j) belong to the same face 
of S, k = 1 ..... n, e~,+~(j) =- ei,(j). The reorderings determined in the manner 
described above constitute the labeling of E induced by S. It is not hard to 
see that different surfaces containing E can induce different labelings. A 
labeled network E is a network E together with a labeling of E induced by 
some surface S with E~_ E(S). 

Given a labeled network ~, we say that S is a minimal surface spanning 
if E(S) = E and the labeling of E induced by S is the given one. 

A network with a base loop is an ordered pair (E, ~(~o) where E is a 
network and s is a planar loop contained in E. A labeled network with 
base loop is defined similarly. If E is a network at level k in a surface S, 
then E has a canonical base loop, i.e., the loop where E meets a face at level 
k ' <  k, k ' =  k - 1 ,  or k ' =  k - 2 ,  depending on the type of the face and 
which boundary component of the face E meets. If E is the base network 
of S, aS = ~ ,  the base loop of E is defined to be ~ .  

Lemma 7. Given a labeled network with base loop, (~, ~ ) ,  there 
exists a unique minimal surface S(J~, L,e) spanning E with boundary 
OS(L ~ )  = -~. 

Proof. The existence and uniqueness of S(E, 5r follow from the 
following prescription for its construction. 

Let S be a surface with E c E ( S ) .  We can assume without loss of 
generality that ~ is the labeled base network of S and 0S = s Let F be a 
level 0 face of S. If F is a type 1 face, we replace F by F, which is the unique 
(finite) flat surface with boundary OF= OextF. If F is a type 2 face, then it 
meets Eo at one of its interior boundary components 5r and we replace F 
by the unique (finite) flat surface r with OF= ~ ' ;  see Fig. 5. | 
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Note that if we take any labeled network E in a surface S together 
with its canonical base loop s162 it follows from the lemma that there is a 
unique minimal surface spanning E and having boundary ~o. 

In the sequel we shall exclusively work with labeled networks, so we 
adopt the convention that the word network from now on means labeled 
network. We also drop the tilde on the labeled network, E, from our 
notation. 

If S is a surface with boundary aS = ~ ,  we denote its base network Eo 
with base loop ~ by ~0(S). Let F1, F2,..., F ,  be the zeroth-level faces of S, 
ordered by our fixed convention, and let S(Eo, ~ )  be the minimal surface 
spanning E o with boundary 5r 

Let /v 1 ..... iv, denote the faces of S(Eo, ~) .  It follows from the proof of 
Lemma 7 that there is a natural 1-1 correspondence between the faces of 
S(Eo, ~Lz ~) and the zeroth-level faces of S. We may assume that /v i 
corresponds to Fi. Then, if F i is a type 1 face, /v is obtained by "filling the 
interior holes" in Fi, and if F~ is a type 2 face, then F~ is a "filling of a hole 
in F~." 

Assume that the face Fi is a type 1 face. Let E~ ..... E~ (~ be the first-level 
networks that meet F~. Let 5r be the canonical base loop of E~. Then c#j 
is one of the interior boundary components of F~. Let F(5:{) be the subsur- 
face of ffi bounded by ~ .  

Now let Fi be a type 2 face. Then F~ and F~ meet in the single loop c3ff i 
and there is only one network at level 1 that meets F~. This network we 
denote by E~. We denote the canonical base loop of E] by ~ and observe 

Fig. 5. 

/ / / - -  . . . . . . . . . . .  

Eo ~ i 

. . . . .  : + ) - - I - . - #  

S Sm lEo, ~C:') 

A surface S with base network E o and boundary ~,g. The surface S~(Eo, ~) is 
obtained by removing all "outgrowths" from S and filling the resulting holes. 
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that ~?F,. lies in the interior of 2"~. Denote the collection of all the first-level 
networks, with their canonical base loops, by 

~q~(S) = {(El, 2"1),..., (E~ ~'), 2"~(i))}7=, (4.1) 

where n is the number of level 0 faces in S. 
We define the set 45(Eo) of excitations of E0 by 

r = { ~ ( S )  I S e d ~ JVo(S ) = Eo, aS = 2" } (4.2a) 

and 

(l)(Fi)= { ( E } ,  , ~ ] )  ..... (Eki (i), o~ik(i))} ( 4 . 2 b )  

Note that ~b(E0) contains the empty set, corresponding to S = S(Eo, 2,). 
In the following, we need generalizations of the definitions (4.1), 

(4.2a), and (4.2b). Given a simple, planar random surface S~ g, we define 
~ ( S )  to be the collection of all pairs (E, LP), where E is a labeled network 
of S at level k and 2,  is the base loop of E. Given (E, 2,) in ~ ( S ) ,  we 
define 

r  = { ~ ( s ' )  1 s '  ~ do, ~ o ( S ' )  = E, ~ s '  = 2 ,  } (4.2c) 

Let F; be a face of a labeled network E, with (E, 2 ' ) e  ~ ( S ) .  The set of 
excitations ~b(Fi) of Fi is defined as in (4.2b), but, instead of being a face 
of Eo, Fi is a face of E. 

In order to explain the basic ideas of our renormalization group 
analysis of lattice random surface models, without having to worry about 
inesse, ntial technical difficulties, we now introduce a modified action for 
simple planar random surfaces: Let Se  do, and let (E, 2") be an element of 
Xk(S). Then 2" is a simple loop in a two-dimensional lattice plane. Let 
A(2") be the number of plaquettes in that plane which are enclosed by 2". 
We set 

k (E,_w) e ~)<(s) 

The techniques developed in the remainder of Section 4 and in Section 5 
can be extended to the model studied previously, but the details would be 
substantially more complicated. 

From definitions (4.2a), (4.3) we easily obtain the following identity: 

G n ( 2 " ) = Z  { Z Z exp[-A_n(S)]} (4.4) 
EO ,~ ~ q~(E0) S:~:V'I(S) = ~ 

where the Eo sum runs over all networks with base loop 2". This identity 
allows us in essence, as we shall see, to pass from summation over surfaces 
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to a summation over networks. Our next step is to represent the weights 
of the networks as sums over surfaces, which in turn can be expressed as 
weighted sums over networks. 

Let A a be a simple loop lying in a coordinate plane. Let S be a surface 
with ~S=  5e, and, as before, let F(A a) denote the unique finite flat surface 
with boundary 5e. We shall use the notation S _1_ 5: to indicate that none 
of the boundary plaquettes of S are contained in F(S~). 

Given a surface S with ~S = 5~ and a base network Eo, we can regard 
S as a "collective excitation" of the surface S(Eo, ~).  The individual 
"excitations" are represented by the first-level networks, each of which can 
be attached to a definite face of S(Eo, ~). Consider a first-level network 
with base loop, (E{, ~e{) e ~11(S). If F/is  a type 1 face, then Aa~ e F i and the 
statistical weight of the sum over all surfaces with base network E 0 having 
the excitation (E}, 5e~) contains the factor 

exp[ - . , to(S ')]  - q~)(E j, ~J) (4.5) 
S':Xo(S')= E: 

as' =-~{.S'- ~: 

If F~ were a type 2 face, then F~ ~ F(Ae~) and the statistical weight of 
surfaces containing (E{, L#~) would include the factor 

exp[_~_~(S,) + ~(Ao)] =,~2)tlTJ, iB t ~ ,  Ae~) (4.6) 
S':  ~ ' o ( S ' )  = OS = ~Fi 

w~(s) = {(e/, ~/)} 

where A~(~q) is the action associated with the links of ~ = OF~, i.e., 

Ap(~) = fl, I~l + floN(~) (4.7) 

where N(Ae) is the number of corners in A a. Let us define 

1 if i c E  i ~ ~  i _ % = (4.8) 
2 otherwise [i.e., ifff~___ F(Ae{)] 

I_emma 8. Let 

= {(E], &o~),..., (El(/), &o~(~))}~,=, 

be the first-level networks, together with their base loops, of a surface 
SeN,  with 0 S =  A a and JVo(S)= Eo. Then 

~] exp [ -A~(S ' ) ]  
S ' :  ,A :0 (S '  ) = EO 

~ s '  = .'.~, J v ' ~ ( s ' )  ~ ~ -  

) =exp[-At3(S(Eo, Ae)] f i  -(~0)~'J ~{)  (4.9) 
i = 1  
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Proof. Since our surfaces are simple and planar, and hence do not 
satisfy any constraints such as self-avoidance, we can independently sum 
over pieces of surface bounded by distinct loops ~ j  and with given base 
networks E~. It is clear from the definition (4.3) of At~ that a factor 
exp [ -A~(S(Eo ,  ~ ) ) ]  can be extracted from the sum on the lhs of (4.9). 
(In this regard, our modified action An leads to substantial simplifications 
of our analysis as compared to the original action An. ) Equation (4.9) now 

follows from the definition of the "activities" ,(~)t~'J s see (4.5), t i f f  I~-,i, 

(4.6). I 

It is convenient to introduce the quantities 

l-[ ,t~'(*~)' ~'Jt~, ~{ )  (4.10) 
.~  ~ qb(E0) i =  i j = l  

and 

k ( 0  

~ep(Fi)= ~ YI .(v~)t~-j &Oil (4.11) q fl t . L ' i '  
~ i ~  ~(F~) j =  1 

so that 

~qr = (I ~B(Fi) (4.12) 
i = 1  

We regard Kr_n(Eo) and ~n_(Fi) as the partitions functions of a gas of excita- 
tions living on the minimal surface and the face F i, respectively. As 
Eq. (4.12) shows, different faces are totally decoupled. 

The statistical weight of all surfaces with base network Eo and 
boundary s is given by 

{exp[ -Aa(S(Eo, ~ ) ) ]  } Krn(Eo) (4.13) 

We think of ftB(S(Eo, s as the "bare action" of the network Eo and 
~_n(Eo) as a "reriormalization" due to the presence of higher-level networks, 
whose main influence, at least in a first approximation, is to modify the 
values of the bare coupling constants fl = (flo, ill, f12). 

Before discussing how ~e_~(E0) depends on Eo and how the coupling 
constants flow upon renormalization, let us briefly return to the hierarchi- 
cal structure of surfaces. We could apply Lemma 8 to the surface contri- 
buting to ~_~(Eo), peel off the bare action of the first-level networks, and be 
left with a renormalization due to second-level networks and higher. This 
process could continue ad infinitum. 
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Rather than thinking of applying the RG from "bot tom up" as 
described above, it is better to consider surfaces of a fixed rank p. Consider 
a network at level p. It cannot carry any excitations, so its action is the 
bare action. Hence, the activities of networks at level p - 1 are explicit and 
we can in principle compute all activities. Once we are down at level 0 we 
can let p tend to infinity. This method will of course not allow us to 
calculate anything explicitly, but enables us to prove bounds, in particular 
Theorem 1 and, with some assumptions, Quasitheorem 6. 

Thus, in the following we consider surfaces of maximal rank p < ~ .  
We propose to prove some statements about  the effective action of surfaces 
at some fixed level p < ~ which are uniform in the "cutoff" p. That  permits 
us to eventually let p tend to oo without losing control. 

Let F be some face at level n. Then the partition function of F is given 
by 

~a(F; n) -= ~ 1-I q(v(e))(E; n + 1) (4.14) 

where ~/(~(e))(E; n +  1) are effective activities of labeled networks at level 
n + 1, with base loops 5e c F for v(E)= 1 and F~_F(Y) for v ( E ) =  2 [-in 
which case the product on the rhs of (4.14) contains a single factor 
q(2)(E; n + 1)]. 

The induction hypothesis of our renormalization group analysis will 
be the following bound, proven in Section 5: 

E:  base  l o o p  of  E = 

(4.15) 

v =  1, 2, where lSV[ is the length of ~ and ~c,+1 > l o g  3, for all n. Clearly, 

e . . . .  l l~l  =- q ( K . + , )  < oo 
~L.~ dist(~.L.%0) ~< IC.~l 

(4.16) 

with ~/ (K)~0 as x ~ oo. This is a well-known bound on sums of two- 
dimensional self-avoiding walks. From (4.14)-(4.16) we conclude that 

&V~(F; n) ~< [1 + q(~+ , ) ]2iF,  (4.17) 

Thus, assuming (4.15), Lr~(F; n) is finite, and its logarithm is bounded by 
O(IFI), where IF1 is the area of F. 

If x , + l  is large enough, then the sum on the rhs of (4.14) can be 
carried out with the help of a convergent high-temperatuire expansion. Let 
us describe the results obtained from such an expansion: Let F be a 
rectangular region with sides of length L and M, contained in 77 2. We set 
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1 
P2 = lim log ~e(F; n) (4.18) 

L, M ~ ~ ~L"M 

1 
2pt = lim - -  [log ~e~(F; n ) -  p2 L . M ]  (4.19) 

L.M~o~ L + M  

4po= lira [ l o g ~ ( F ; n ) - p 2 L . M - p ~ ( L + M ) ]  (4.20) 
L , M  ~ co 

It is a well-known consequence of the absolute convergence of the high- 
temperature expansion that the limits in (4.18)-(4.20) exist; see refs. 19-21 
and references given there. 

Let [0F] denote the length of 0F and [C(F)I the number of corners of 
0F; the set of corners C(F) of 0F is the set of sites in OF where two edges 
in 0F meet at an angle different from ~z. 

I . e m m a  9. Let Lr~(F;n) be given by (4.14), and suppose that the 
constant ~cn+ 1 in (4.15) is sufficiently large. Then 

log ~e_~(F; n ) =  P2 IF[ + px [0F] + Po IC(F)f 

+ O{exp[ - c ( ~ ,  + i) d(F)] } (4.21) 

where Pz, Pl, and Po are defined in (4.18), (4.19), and (4.20), c 0 c , + 0  is 
positive for ~cn+ 1 sufficiently large and tends to + ~ as ~ , + ~  ~ ,  and 
d(F) is the smallest distance between edges in 0F which do not share a 
common corner of OF. 

Lemma 9 is a fairly standard consequence of absolute convergence of 
the high-temperature expansion. Here we only sketch the idea of the proof; 
the technical details can be extracted from refs. 20 and 21. Let F be a finite 
region in Z 2. Let N be a countable set of "polymers" (finite subsets of Z 2 
wkh connected boundary). Let z be a complex-valued function on N, called 
the "activity function," with the property that 

]z(p)[ < e  clapl for p ~  (4.22) 

with c > log 3. We define a partition function 

n p l , . . . , P n ~  j = l  
p i c F ,  Vi 

p i c ~ p j = ~ , V i ~ j  

(4.23) 

By (4.22), the sum on the rhs of (4.23) can be carried out with the help of 
a convergent "high-temperature" expansion, for c large enough. To 
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describe the result of that expansion, we require the following notions: We 
define a multiplicity function X on ~a to be a function on ~ with values in 
{0, 1, 2, 3,... }. A multiplicity function X is called connected if, for every pair 
(P~,P2), with pl, p 2 e ~ ,  such that X(px)>0  and X(p2)>0,  there is a 
sequence of polymers pl ..... pU such that p~= p~, pU= P2, )((pi)> 0, for 
i = 1 ..... N, and pi c~ pi+ 1 # ~ ,  for all i = 1 ..... N -  1. If X is a multiplicity 
function, we define supp X to be the union over all p e ~  for which 
X(p)  > O. 

The high-temperature expansion for ~ ( F ;  ~a, z) yields the following 
representation for log ~ ( F ;  ~ ,  z): There is a function ~0 r defined on the set 
of all multiplicity functions X on ~a such that r  0 un less X is 
connected, and 

log ~e(F; ~ ,  z) = ~ q~r(X) l-[ z(P) xtp) (4.24) 
X p E . -  ~ 

s u p p  X ~_ F 

We now assume that z is translation invariant, i.e., 

z(p) = Z(pa) (4.25) 

where Pa is the translate of a polymer p e ~ by a lattice vector a e 7/2. We 
also assume, to simplify matters, that z is invariant under rotations of the 
lattice. 
We then define 

P2 = ~ q~ 1-I z(P) x~p) (4.26) 
X: s u p p  X ~  0 p e g  ~ 

Let L+ and L_ be the half-lattices {(x, y)~7/2; x-~0}. We set 

Pl = ~ ~~ 1-I z(p) x~p) (4.27) 
X: s u p p  X ~ 0 ,  p E . ~  

s u p p  X r~ L +  =~ ,Q5 
s u p p  Xc~ L r  

The quantity P2 is interpreted as bulk pressure and p~ is interpreted as 
edge pressure. Similarly, a quantity Po, interpreted as "corner pressure," 
can be defined. The key fact used in the proof of Lemma 9 is that if the 
constant c in (4.22) is large enough, the expansions for log ~ (F ;  ~ ,  z), 
P2 ,  P l ,  and Po [see (4.24), (4.26), and (4.27)], are all absolutely con- 
vergent. Representation (4.21) follows from these convergence properties 
by using the inclusion-exclusion principle. The "error term" 
O{exp[ -c ( tG+ 1)d(F)]} on the rhs of (4.21) refers to the contribution of 
all multiplicity functions X with the property that supp X contains in its 
interior two sites belonging to two different edges of OF which do not have 
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a common corner. Our estimate, O { e x p [ - c ( K , + ~ ) d ( F ) ] } ,  on the size of 
that error term follows from (4.15) and (4.22), respectively. 

For further details we refer the reader to the literature. (2~ 

k e m m a  10. If r/(~)(E; n + 1) >~ 0 ,  for all networks E, then 

ply<0 

ProoL Consider a square face F with sides of length NL for some 
constant L and N =  2, 3, 4,.... The face F can be subdivided into square 
faces F~, F2 ..... FN2, with sides of length L. In definition (4.14) of f~(F;  n) 
it is understood that, for every (E, Y ) ~  @, 

Y c~ OF= ~ (4.28) 

We suppose, to begin with, that v(E) = 1 for all (E, ~ )  ~ Y ;  this defines a 
modified partition function ~ ( F ;  n). By (4.28), 

N 2 

~e}(F, n)/> l-I ~ ( F j ;  n) (4.29) 

From this inequality we conclude that 

1 ~> 1 log ~ ( ~ ;  n) N2L2 log ~e~(F; n) L (4.30) 

By translation invariance, the rhs of (4.30) is independent of j. We 
conclude that 

1 
(2NL)2 log ~b(F(N); n) is monotone increasing in N (4.31) 

Here F (N) is a square face with sides of length 2NL. Next, we note that 

y '  r/ (2)(E;n+ 1)<~e -cl" (4.32) 
(E,.~) 

if the sum extends over all excitations of type 2 of a square face with sides 
of length L. On the rhs of (4.32), C is a positive constant. The bound (4.32) 
follows from (4.15). Hence 

lim 1 1 L ~ oo ~-5 log ~a(Fj; n) = l i r n  ~-5 log ~e~(Fj; n) 

1 1 
lim ~er n) = lira ~q~(F; n) L ~ o o ~ l o g  ~ l o g  ' 

t ~ a o  

(4.33) 
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Comparing (4.30), (4.31), and (4.33) with (4.21), we conclude that 

pl~<0 | 

Next, let E be a labeled network at level n. Let S(E) be the minimal 
surface spanned by E, and let 8 S ( E ) = - ~  be the base loop of E. Then, by 
Lemma 9, 

q~)(E, r/) = exp{ - [f12 IS(E)I + fll IE[ + floN(E)] } 

• exp(p2(n + 1) IS(E)I + p d n  + 1) IE[ 

+ po(n+ l ) N ( E ) + O { e x p [ - c ( x n + l ) d ( E ) ] } )  (4.34) 

where po(n + 1), pl(n + 1), and p2(n + 1) are the pressures introduced in 
(4.18)-(4.20) at level n + 1, and d(E) is the smallest distance between two 
edges in E which do not share a common corner. 

Hence, the effective action of S(E) at level n is given by 

ft(")(S(E)) = fl2(n) IS(E)I + ill(n)IEI 

+ flo(n) N(E) + nonlocal terms (4.35) 

where 

fl2(n) = [12 - p2(n + l ) 

f l , (n)= [1, - p,(n + l ) 

[1o(n) = flo - Po( n + 1 ) 

(4.36) 

The quantities po(n+ 1), p l ( n +  1), and p2(n+ 1) depend on flo(n+ 1), 
fl~(n + 1), and fl2(n + 1). One can argue that the "nonlocal terms" on the 
rhs of (4.35) are irrelevant. Hence, up to irrelevant terms, the effective 
action has a form that is independent of n. Equations (4.36) are the renor- 
maIization group f low equations for the coefficients of the local terms in the 
effective action, the area, edge, and corner terms. In the study of these flow 
equations, the expansions (4.24), (4.26), (4.27),..., are useful (although the 
requirement of absolute convergence of these expansions introduces limita- 
tions). However, Lemma 10 yields a completely nonperturbative result on 
these flow equations: This lemma says that pl(n + 1)~<0 and hence 

fl~(n + 1) >! fla (4.37) 

(ill is the bare coupling constant on the highest level), for all n. Inequality 
(4.36) is a nonperturbative proof of asymptotic freedom of the extrinsic 
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curvature term. If one could achieve better control over the nonlocal, 
"irrelevant" terms in the effective action, then (4.36) would yield a proof of 
Quasitheorem 6 (Section 3). 

5. P R O O F  O F  T H E O R E M  1 

In this section we use the machinery introduced in the previous section 
to give a proof of Theorem 1. An "ideal gas" upper bound on ~_B(E) and 
an inductive argument yield the desired result. First, we state a lemma, 
whose combinatorial proof is straightforward. The lemma also follows from 
the more involved combinatorial estimates of surfaces in Section 8. 

L e m m a  11. For any i l l > 0  there exists a Bo(fl~)< oo such that, if 
flo > Bo(fll), then the sum 

s e--BllEl--~~ ill) (5.1) 
E : E ~ x  

over all networks that contain a given point x ~ 2 d is convergent. 

Define 

G~P)(~e)= ~ expl - -A~(S) ]  (5.2) 
S:  OS  = ZF 

r( S )  <~ p 

Clearly, G~P)(Sg) ~ Gs(s ) as p ~ oo. Similarly, we define r/_~i~p(E, L a) to be 

the contribution to r/~)(E, 5e) coming from surfaces of rank <~p, i.e., 

q(1)'E ~ ) =  ~ e x p [ - A s ( S ) ]  (5.3) S,  p t  , 

s: Yo(S) = E 
c~ S = SF , S I SF 

r ( S ) < ~ p  

and similarly for .(2)~E ~ ) .  
' l  fl, p ~, , 

Our goal is to prove inductive bounds on q~i)p(E, L~) which imply a 
uniform bound on G~P)(Sr and thereby prove the essential part of 

Theorem 1. Let f12 > 0 be given. By Lemma 11 we can choose fl0 + fll so 
large (with fll > 0) that 

~, 15ol e-S, lel-floN(E)</~2 (5.4) 
(g,,~) 

where the summation is over all networks with a base loop that contains 
a given point x E Z d. 

Define ~s,o(F) = 1 for any face F, and, for p/> 1, let ~e~.p(F) be defined 
by (4.11) with q~)(E, ~ ' )  replaced by r/~i)p(E, •). Note that 

r/s, ,, (1! (E, ~ )  = exp[ -As(S(E,_ ~e))] (5.5) 

822/55/1-2-5 
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and if -~2)~E ~ )  represents an excitation of a face F, then by (4.9) t l  f l ,  l '~  , 

q(=>tE ~ ) =  exp[ - /3=( lF (~e ) l -  tFI)] exp [ -A~(S(E ,  ~ ) ) ]  (5.6) ~,1~, 

Since F(L,r 1FI, we have 

t/~,)l(E, c j )  ~< exp[- /31  [El - ~~oN(E)] 

for i =  1, 2. 
Now suppose that, for k = 1, 2,..., p, 

t/~e)k(E, ~ )  ~< exp[- --/31 [El - / / 0 N ( E ) ]  

(5.7) 

(5.8) 

By Lemma 8 we have 

~/_~,p(1) ~-, I(E, L,e) <~ exp[ - .4~(S(E,  LJq))] 

f i  k(O 
rl fl, p ~'L~ i ,  

~ E ~ ' ( E )  i=1  j = l  
(5.9) 

Dropping the constraint that the loops L~ are not allowed to intersect (if 
vu= 1), we obtain from (5.8) that 

f i  k(i) "l fl, p K ~ i  , 
~-eq~(E) i=1  j = l  

i=1  (E', 5f') 
.LP' r~ F, ~ ,O 

+ ~ exp[--/31 I E ' I - / 3 o N ( E ' ) ] }  
(E', .~') 

F( '~')>~ F~ 

<~ 1-] exp lEvi ~ I~'1 e x p [ - / 3 1 1 g ' l - / 3 o N ( E ' ) ]  
i=  1 (E', Ae') 

Av, aO 

--.< exp[/32 IS(E, 5(')1 ] 

if /30+/31 is chosen according to (5.4). Combining this with (5.9), we 
reproduce the bound (5.8) for ~(1) i.e., I 1 ~ , p + 1 ,  

• / ( 1 )  ~< exp[--//1 IE [ - / / oN(E) ]  fl, p + l  

The same bound for ~(2) is proven similarly. Thus, (5.8) is valid for all t/if, p +  1 
k, provided/3o +/31 is chosen sufficiently large, for a given/32 > 0. 
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It now follows from (4.3), (4.7), and (5.1) that 

G_~,p(~) ~< const for all p e 

and hence G~(L,(')< ~ for arbitrary/3 2 > 0, provided/~0 + / ~  is sufficiently 
large. 

6. THE RG METHOD FOR THE TWO-LOOP FUNCTION 

In this section we describe how the procedure of Section4 can be 
generalized in order to decompose surfaces with two (or more) boundary 
components into a hierarchy of networks and faces. Then we give sufficient 
conditions for Quasitheorem 6 to be valid. 

Let S be a surface with two boundary components 5r and ~ ' .  Let E 
be a network in S, and let E = UT= t ~ / b e  the decomposition of E into 
loops, i.e., each ~ / i s  a boundary component of one of the faces in S that 
meet E. Suppose we cut the surface S along one of the loops ~ .  Then, 
since S has planar topology, it becomes separated into two components, St 
and $2. If we assume that St is the component that contains ~ ,  there 
are two possibilities: Either O S ~ = ~ w ~  and ~ S 2 = ~ w ~ '  or 0 S t =  

w ~.  u 5 ~ and dS2 = ~ .  In the first case we say that ~ is relevant, but 
in the', second case we say that it is irrelevant (see Fig. 6). If one of the loops 

in the network E is relevant, we say that the network itself is relevant. 

nt 

U relevant 

Fig. 6. Relevant and irrelevant loops in a surface with two boundary components ~ and 2,0,. 
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Otherwise, it is irrelevant. Denote by Jr the collection of all relevant 
networks in S. As the notation suggests, Jt{o(S) will now play a role similar 
to the one played by the base network for surfaces with one boundary 
component. It is convenient to adopt the convention that the boundary 
loops ~ and ~ '  are relevant. Note that relevant loops in S can be charac- 
terized by the property that any path in S that connects the two boundary 
components intersects all relevant loops but need not intersect an irrelevant 
loop. 

Given a surface S E g with 0 S =  LP w ~ ' ,  it is not hard to see that 
there exists a unique minimal surface with boundary 50 w LP' whose edge 
network is ~o(S).  This can be proven by a simple generalization of the 
argument leading to Lemma 7. We denote this minimal surface by 
S(J/go(S)). Now we can write 

G~(5~ ~ 5P') = ~ ~ e x p [ - A e ( S ( N ) ) ]  ~ ( N )  (6.1) 
~ '  S :  j t ' 0 ( S )  = ~ 

where the sum over f~ runs over all families of relevant networks that can 
arise in surfaces with boundary 5e w 5e' and ~ep(f#) is the sum over all 

excitations that can be attached to the faces of S(f~). Since 

~_~(~) = 121 ~ ( F i )  (6.2) 
i = 1  

where {F1,..., F,} are the faces of S(N), the analysis of Section4 applies 
and we have 

~(f#)  <~ (I  eP(e') (6.3) 
i = 1  

with P(F) = log ~ ( F ;  0); see (4.14). 

Proposition 14. If 

P(F) <~ P2(_fl) IFI + Pl I~FI + Po IC(F)I (6.4) 

for any face F, where/~o and/31 are constants, then there exist fl* > 0 and 
e > 0 such that 

m(fl) ~> e(fll - fl*) (6.5) 

for/~1 >/~?- 

Proof. Let ~ be any loop, and let ~ ,  be the translate of ~ a dis- 
tance x along a coordinate axis. If c~S= Lfw~cfx, then clearly ]E(S)[ >~4x. 
Hence, the action of any surface contributing to G_~(Y, ~x) contains a term 
4fllx and we shall prove that for fll sufficiently large, a fraction of this term 
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can be removed from the action without affecting the convergence of the 
sum defining G~(5(, 5(x), leading to a bound of the form 

G~(5(, 5(x) ~ const, e ~x (6.6) 

which implies the desired result. 
Let ff be the collection of relevant networks in a surface S with c~S = 

5( w 5(x. We can order the elements of (r El,  E2,..., En, starting at Y,  such 
that ~f we cut S along a relevant loop in E~, then E 1 ..... E~_ 1 are in the 
same component as 5(, while E~+ 1,..., E,  are in the same component as 5(~. 
Let S(~) denote the minimal surface spanning ~. Then E~+I is connected 
to a hole in exactly one of the faces of E~, since S(ff) is planar. Denote the 
boundary of this hole by ~. The face in S containing ~ cannot carry any 
type 2 excitations. Note that [Vgt ~< max{ [E~[, lEg+ 1[ } ==- Mi .  We can think 
of S(~) as a "tower" of n surfaces glued together along the loops 
~,..., 7n 1. Given E~, the number of possible 7~ is bounded by M~3 ~t~. 
Hence, by Lemma 11, the sum 

e - BI I~1 - BoN((~) (6,7) 

where 

I~t  = ~ tEil ,  U ( ~ ) =  ~ N ( E ~ )  
EiE~  E i ~  

is convergent for B 1 sufficiently large. 
For any ff~M, fl2 -- pz( f l )  >/ O, since otherwise the loop functions 

diverge, so using the bound (6.4), we obtain 

Gg(5(, 5(x) ~<~ e x p [ -  (/~i - �89 - ( f lo-  �89 N(ff)] 

~< const, exp( -ex )  (6.8) 

for/~1 > fil/2 + e/4 sufficiently large, | 

The above proposition is as close as we can get to proving 
Quasitheorem 6. The problem is that it is beyond the reach of our present 
understanding to prove bounds on the error term in (4.21) that are uniform 
in the shape of the region under consideration and depend linearly on the 
length of the boundary. We are, however, convinced that a bound of the 
form 

[P(F) - P2(fl) IF[[ ~< const- 3FI (6.9) 

is valid in general. 
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It is not hard to see how to generalize the method of this section to 
decompose surfaces with three or more boundary components into a family 
of basic networks + excitations. Since we do not study the higher loop 
functions in this paper, we do not describe this in detail. 

7. G E N E R A L I Z A T I O N S  

In this section we briefly discuss the complications that arise in the 
RG procedure described in Sections 4-6 if one drops the condition that 
surfaces are simple. We do not describe in full detail how to deal with these 
complications, but discuss the most important problems which are encoun- 
tered and the main ideas that go into their solution. 

(i) Branch points. A branch point is a vertex j in a flat surface F such 
that # ~?*j> 4 if j is an interior vertex and # O*j > 5 if j is a boundary 
vertex. 

The canonical example of a branch point is a flat surface F with the 
topology of a disc and a boundary 0 F =  50 which is a totally self-overlap- 
ping loop and has winding number 2 with respect to all its internal points 
(see Fig. 7); i.e., F looks like the Riemann surface of the square root 
function and consists of two sheets that overlap. The location of the 
branch point inside 5 ~ is arbitrary, so there can be IFI/2 flat surfaces with 
boundary 50. It follows that a network which contains a self-overlapping 
loop can in general be spanned by many distinct minimal surfaces. The 
extra entropy of surfaces due to branch points can be controlled by using 
the increased number of corners in the networks of surfaces that contain 
branch points. This is in fact what is done in the combinat, oric estimate of 
Section 8. 

['"Branchpoint ] 

Fig. 7. A branch point of degree two in a surface S imbedded in ~3. A curve (g which winds 
once around the branch point in S winds twice around it in R 3. Every plaquette in a 
neighborhood of the branch point is covered twice by the surface. Clearly, there exist branch 
points of an arbitrarily high degree. 
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(ii) Tongues. Let F be a flat surface with exterior boundary ~r A 
tongue in F is a subsurface of F that lies outside s (see Fig. 8). The 
problem with tongues is that they can have an arbitrarily large area for 
surfaces with a fixed exterior boundary. Clearly one should regard tongues 
as excitations of underlying minimal surfaces with no tongues, but there is 
no unique way of specifying where the tongues begin and the minimal 
surfaces end. This problem can be overcome by a cumbersome convention 
at the price of not having excitations separated from the underlying surface 
by edge links. 

(iii) Network excitations. Consider a simple surface S with a network 
E. Suppose we cut S along one link l e  E that lies in the boundary of two 
plaquettes p~ and P2. Take a large, flat disc D perpendicular to Pl and P2, 
cut D along one link that does not meet the boundary of D, and glue the 
cut D to the cut S as indicated in Fig. 9. We can imagine that D is the 
bottom of some cylinder T, so the surface S' obtained by gluing T to S has 
the same boundary as S and should be regarded as an excitation of S. In 
fact, the cut D is a type 2 face of S', spanning a hole of area 0. However, 
T is not in a natural way associated to any particular face of S, but rather 
to the network E. The entropy of excitations of this type is of course easily 
controlled by the action of the edge links and corners of E. See Fig. 9. 

Note also that given a minimal surface S, we can disconnect the faces 
of S by excitations of the type we just described; see Fig. 10. Hence, the 
faces of a surface can coalesce when we shave off excitations. The entropy 
of excitations of this type is easily controlled by the activities of networks 
but makes the renormalization process more complicated. 

i 

v \ 
I 

67 

~ ~ S e x t  F 

Fig. 8. A flat surface F with a tongue. 
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/ 

I 

/ 

Fig. 9. The box T with bottom D is an excitation of S not associated with a particular face 
of S. 

The three types of surface phenomena described above represent the 
most important obstacles encountered in extending the RG method to the 
full ensemble of PRS. These obstacles are technical rather than conceptual. 
If, however, we want to extend the RG method to surfaces with nonplanar 
topology, a host of conceptual problems arises, since the decomposition of 
the networks into a hierarchy breaks down. There is no simple generaliza- 
tion of our method of separating "excitations" from "minimal surfaces" in 
this case. We can of course use the techniques of this paper to deal with 
planar SA surfaces and prove upper bounds, which allow us to conclude 
that planar SA surfaces have qualitatively the phase diagram depicted in 
Fig. 1 and the mass is strictly positive for/31 sufficiently large. 

Fig. 10. The excitation T splits one of the face of S into two parts, F 1 and F 2. 
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8. C O M B I N A T O R I A L  E S T I M A T E S  

In this section we prove the bound (3.5), and we shall see that 
Lemma 11 easily follows from the proof. Let n~(A, E, N) be defined by 
(3.4), i.e., n~o(A, E, N) equals the number of connected planar surfaces in 
7/a with boundary Lf, area A, E edge links, and at most N corners, counted 
with multiplicity. We prove the following. 

Proposition 15. For any e > 0 there exists a convex region ~ _  ~2 
containing the half-lines 

and 

Io= {(/30, 0) i Bo(~) </~o < oo} 

I 1 = { ( 0 ,  fl') [ Bl(e) < fl' < ~ } 

for some finite B~ and B 1 (e) such that, for (/3 ~ ~N~, we have 

n ~e(A, E, N) <~ const- e "A + ~IE + ~~ (8.1) 

Before proving the proposition, we make a few remarks. First, it is 
obvious that the subset N~ of R 2 consisting of those (/30,/3~) e R2 for which 
(8.1) holds is convex. 

Second, if we define 

n~(A) = r { S ~ g l O S = 5 ~ ,  ISI =A,  N(S)<~6A} (8.2) 

and 

m~(A) = # {Se$[c3S= ~ ,  IS[ = A , E ( S ) ~ 6 A }  (8.3) 

then we claim that it suffices tro prove the bounds 

b ~( A ) <~ const, e f(6)A (8.4) 

m~(A ) <<. const- e g(6)A (8.5) 

where the functions f and g tend to zero as 3 + O. Here, and elsewhere in 
this section, g denotes the ensemble (v) of planar random surfaces. 

In order to prove the claim, note, first, that 

IE(S)[ ~ 2A + ]5r 

for any S e s  Replacing 6 by 3 in (8.3), we obtain 

nze(A) = # {S~ g[~?S= s ~~ [SI =A}  ~< const .e C~ (8.6) 
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for some finite constant Co. A bound of the form (8.6) was first proven in 
ref. 16. Now, for a given 5>0 ,  we choose ~ > 0  such that g(6)<5 and 
conclude from (8.5)-(8.6) that 

n~(A, E, N)<~ # { S e ~ [  0 S =  Sf', [S[ =A,  E(S)<~E} 

~ const.  e ~A if E/A <<. 6 
~< (cons t .  e c~ if E/A > 6 

~< const - e ta +co,~-'E (8.7) 

The bound (8.7) implies that the half-line 11 in Proposition 15 is contained 
in ~ if we choose Bl(e)= Co6 1. Similarly, by combining (8.4) and (8.6), 
we conclude that I 0 - - -~  for a suitable choice of B~ 

Clearly, IE(S)I ~> N(S) for any surface S, so 

m~(A)<~n~(A) (8.8) 

Hence, it suffices to establish the bound (8.4) in order to prove the proposi- 
tion. 

The proof of (8.4) occupies the remainder of this section. It is con- 
venient to introduce an ensemble of surfaces which satisfy the following 
three conditions: 

(i) If v and v' are nearest neighbor edge vertices, i.e., v and v' both 
belong to an edge link and there is a link joining v and v', then the link 
joining v and v' is an edge link. 

(ii) If v and v' are diagonally opposite edge vertices in the boundary 
of a plaquette in a surface, then the boundary of the plaquette contains 
exactly two edge links and these connect v and v'. 

(iii) If v and v' are nearest neighbor vertices in a surface, then they 
are not both corners. 

Note that it follows from (ii) that two opposite links in the boundary 
of a plaquette cannot both be edge links. 

It may be seen as follows that we can assume that our surfaces satisfy 
the above constraints: Let S ~ g ,  with OS= ~ ,  and [SI =A.  Divide every 
plaquette in S into four equal smaller plaquettes, as indicated in Fig. 11. In 

Fig. 11. Subdividing a plaquette into four smaller ones. 
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this fashion we obtain a surface with vertices in 12U. Scaling all distances 
in �89 a by a factor of 2, we obtain a surface S' e g, with 8S' = Y' ,  IS'l = 4A, 
and N(S')= N(S). Furthermore, it is clear that S' satisfies the constraints 
(i)-(iii). Thus, defining 

,8  nze= # { S E g [ S S =  A a, iSI =-A, N(S)<~6A, 

S fulfills (i)-(iii) } (8.9) 

we have shown that 
n~e( A ) <~ n~/,4(4A) (8.10) 

which in turn proves that it suffices to verify the bound (8.4) for n'~(A) 
instead of n~(A). 

We therefore conclude that Proposition 15 has been established once 
we have proven the following lemma. 

L e m m a  3 6. There is a constant C and a positive function f,  defined 
for 0 ~< 6 ~< 1, such that 

n~(A) <~ Ce f(6)'4 (8.11) 

and 
f ( 8 ) ~ f l l n 6 1  as 8 ~ 0  

ProoL For the sake of clarity, we first present the proof for a 
restricted class of surfaces whose faces do not overlap, i.e., in addition to 
the constraints (i)-(iii), we shall assume the following. 

(iv) In each face of the surface no two plaquettes overlap (i.e., are 
copies of the same plaquette in y a). 

Subsequently, we explain what modifications are needed in order to 
deal with the general case. 

We first describe the general line of argument. To each surface S 
satisfying (i)-(iv) with 8S = L,e, [sI = A, and N(S) <~ 6A, we associate an 
ordered sequence ql ..... qa of (abstract) plaquettes some of whose 4A links 
are marked by an arrow and some of whose vertices are distinguished, by 
being colored red, say. We specify a process which allows us to determine 
the markings of the plaquette sequence that corresponds to a given surface 
and, at the same time, we bound the number of surfaces that can give rise 
to each sequence. 

The surface S can be constructed by successively embedding the 
abstract plaquettes ql,..., qA into 7/d and gluing them together in a 
prescribed way, explained below. In this process, a marked link is either 
mapped into a link incident with a corner, such that the arrow points 
toward the corner, or it is the first edge link in some connected component 
of the edge network that we encounter in the construction of the surface. 
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Similarly, a colored vertex is the first vertex encountered in some connected 
component of the edge network. 

It follows that the number of decorated links is <~56A, and the 
number of colored vertices is ~<6A. Thus, the total number of sequences 
ql,---, qA is at most 

56A 
( 4 A ] ( 4 A ~  2i <~eC,,l,n,~, A (8.12) 

i=j j=l  2 i / \ j  / 

for some constant C1 (provided 6 ~< 1/2, say). 
We shall also prove that at most exp(C2611n6[A), C2=const ,  

different surfaces, S~ g, with 3S = ~ and I SI = A, give rise to the same 
sequence q~,..., qa. In fact, the reconstruction of a surface S from a 
sequence q~ ..... qA requires at most 4A steps, as we explain below, and each 
step is uniquely determined, except when a plaquette is glued onto an edge 
link emerging from a corner, in which case there are at most 2 d - 3  
possibilities. The number of steps in which this ambiguity arises is bounded 
by 2N(S), and this proves the desired bound (8.11). 

We now describe in detail the procedure by which a given surface S, 
with ISl = A, is constructed by successively embedding plaquettes ql ..... qA 
into 77 a and gluing together overlapping links. At the same time, we show 
how the corners and links of the plaquettes ql,..., qA are marked so that S 
is also uniquely determined by the marked qi. The basic idea in this induc- 
tive construction of S is that one face is constructed at a time and once a 
boundary component of a face is encountered, all plaquettes containing 
links from that boundary component are added to the surface. In the 
construction of each face, all steps (except the first one) will be uniquely 
determined by the markings of the qi. In each step we glue together two 
overlapping links or add one plaquette and glue it to the surface along 
one link. 

Let S e N  satisfy conditions (i)-(iv), 0 S = Y ,  IS] =A.  Below, we shall 
order the plaquettes in S, p~,..., PA. We begin marking the plaquettes by 
coloring all boundary links green. If pi contains a corner and l is a link in 
0pi containing this corner, then we label I by an arrow pointing toward the 
corner. Note that this marking is well defined, since, by (iii), I can meet at 
most one corner. 

After performing these markings, we proceed to construct a sequence 
S~ ..... Sk(s), 1 <.k(S)<~4A, of connected, nondecreasing subsurfaces of S 
such that $1 consists of one plaquette and S~(s) = S. With each surface S.  
in this sequence we must associate some data: Denote the boundary 

1 _9~l(n) components of Sn by ~ o ,  ~t, . . . . . . .  , , l(n)>~O. 
The number of vertices in L,e~,, i = 0 ..... l(n), is denoted by k(n, i) and 

the vertices are ordered consistently with a chosen orientation of S. Thus, 
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to specify the ordering it is enough to specify the first vertex in each com- 
ponent. We denote the vertices in ~ ,  by n,i ,,i 01 .... ,0k~,,i) in increasing order. 
Similarly, the links in 5O~, are denoted by n,~ n,t ,,i ll .... , l~,,/~, where l) connects 
O] "i and ,,i (with ,,i ,,i Oj+l Ok(,,~)+l =01 ). The construction of the surface S, is 
such that the boundary loops 5O~,..., ~ ' )  consists entirely of edge links. 
There are numbers s(n, i) ~ {0, 1,..., k(n, i ) -  1 } for i = 1 ..... I(n) such that 
the links ~'i ~. l 1 .... , I~r 0 are either boundary links (i.e., colored green) or have 
to be glued to other links present in 5O~, but l y  is not to be glued to l~+~ 
for j =  1,..., s(n, i). On the other hand, =_9o0 is either empty or there exist 
numbers rl(n), r2(n)~ {1 ..... k(n, i)}, with rl(n)<~r2(n), such that the ver- 
tices n,o ~.o 0r,C,) ..... 0r~r are not edge vertices, while the other vertices in 5oo (i.e., 
0~ '~ ..... 0 "'~ and 0 "'~ .,o ~ , ) -  1 ~2(,) + ~,.", 0k~,~)) are edge vertices. Furthermore, there 
is a nonnegative integer s(n) <~ r~(n) such that the links l~ ''~ ..... l~"('~ ~ are either 
boundary links or have to be glued to other links in 5oo, but l~ '~ is not to 
be glued to l;ff~ for j =  1,..., s(n). Note that by assumption (i) the links 

n,0 n,0 l~ , )_  1,'", l~2(,) (with i..o 1,,o -o = ,k(,,ov are not edge links while the other links in 
5 ~ are edge links. In the following the notion of a subsurface S. of S also 
includes an ordering of the boundary loops, as above, together with an 
assignment of numbers s(n, i), i= 1,..., l(n), and s(n), rl(n), r2(n). 

We now explain how the subsurfaces S, are constructed inductively. 
At the same time, we define an ordering of the plaquettes in S. First, we 
define S~ : Choose an orientation of S and fix some oriented link l ~ 5O. By 
definition, S~ equals the oriented plaquette p~ in S that contains l in its 
boundary. Furthermore, the ordering of the vertices in ~S~ is fixed by 
letting the endpoint of l be the first vertex 01 '~ Clearly, /(1)--0 and 
k(1, 0) = 4. The last link 14 ~'~ = l is an edge link, while the second link is not 
an edge link, by assumption (ii), and hence the vertices 0~ '~ and 0~ '~ are 
not both edge vertices by assumption (i). Moreover, 0~ '~ (resp. 0~ '~ is an 
edge vertex exactly if ll ~'~ (resp. l~ '~ is an edge link by assumption (i). 

Fig. 12. 

~ t'? ~ 

L',,o 

oi,O t..lJ,o 0 ,o 
4 "4 

An illustration of S~ consisting of one plaquette. 041,~ is a corner and l is a boundary 
link. 



76 Ambjern et  al. 

Thus, by changing the orientation of S, if necessary, we may assume that 
0~ '~ is not an edge vertex. Clearly, l~ '~ is an edge link exactly if 0] '~ is a 
corner and hence l~ '~ marked by an arrow. Thus we set s(1)= 0, r 1(1)= 2, 
and we set r2(1)=3 if 131'~ is not marked by an arrow whereas we set 
r2(1) = 2 if/].0 is marked by an arrow. This finishes the construction of $1 
(see Fig. 12). 

Assume now that S, has been constructed. There are three cases to 
consider: 

1. 2~o is nonempty and (rl(n), r2(n))r (1, k(n, 0)), i.e., there is at 
least one edge vertex in 5~ ~ 

2. 5 ~176 is nonempty and (rl(n), r2(n))= (1, k(n, 0)), i.e., there are no 
edge vertices in ~ o .  

3. ~ o  is empty, i.e., all links in 0S, are edge links. 

We construct the subsurfaces S ,+ t  as follows. 

.,o emerging from .,o in positive Case 1. Consider the link l~,(.)_z 0~(.)_i 
direction along 5e ~ Since this is not an edge link, while its starting point 
is an edge vertex, by the construction of S.,  the only link in CS. to which 
/n ,O r,(.)-t can possibly be glued is l"'~ since this is the only other link in OS. 
whose boundary contains exactly one edge vertex. Since the plaquettes in 
S. containing 1..0 and ..o �9 ~ , ( , , )  L lr2(.), respectively, clearly belong to the same face 
in S, it follows from (iv) that l ' '~ and ..o r,(.)-~ l~2(. ) have to be glued together 
exactly if they are overlapping with opposite orientation. Thus we must 
distinguish between two subcases (see Fig. 13): 

l a .  . ,o  . ,o  l~(n)_ I and It2(. ) do not overlap with opposite orientation. 
lb. ..o ..o l~,(.)_ ~ and Ir2(.) overlap with opposite orientation. 

n)o Oi 

/-~n, o 
: : : ] "r2(n)+l 

- - r̂l,o 

11)O 

i(n) 
. . . . . . .  "9 

n,o 
r t ( n ) -  l 

. . . . . .  . . I  

O n,o 
rl(n)-I 

O) 
Fig. 13. 

0•0 r?_(n) 

On,o I { ~ r % 0  

r 2 (n) 1 ~r2 (n)+l 

" r  I (n) ~r! (n} I 

O? '~ 

b) 
(a) Case la; (b) case lb. 

I I 
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Case la. In this case a new plaquet te  has to be glued onto  S,, along 
lrl(n)n' 0 _ i '  I f  the last p laquet te  added to S.  was n u m b e r  i, the new plaquet te  

n,o is not  an edge link, this p laquet te  has to lie is number  i + 1. Since l.,(.) 1 
in the same plane and has the same or ienta t ion as the plaquet te  in Sn onto  
which it is glued, i.e., the p laquet te  in S.  containing the l i nk / . , 0  This r l ( n ) -  1 ' 

defines Sn+ 1. Obviously,  the n u m b e r  of bounda ry  componen t s  in S.  +1 is 
the same as in Sn and, as we shall see, the c o m p o n e n t  o s  + 1 containing the 
points  in 5~ ~ contains bo th  edge vertices and non-edge vertices. Thus,  we 
have l ( n + l ) = l ( n ) ,  and we set ~ i + 1 = 5 r  ~. and s ( n + l , i ) = s ( n , i ) ,  
i= 1 ..... l(n + 1), keeping the ordering of the vertices. The  ordering of the 
vertices in 5a~ is chosen such that  07 '~ is the first vertex in o " ~ n  + 1" 

We next determine rl(n + 1), r2(n + 1), s(n + 1) using only the informa-  
tion encoded in the mark ings  on the links. Since clearly 0 7 ' ~  +l '~ for 
i = 1  ..... r l ( n ) - l ,  we set s ( n + l ) = s ( n ) .  The new vertices in 5r176 are 
vrl(n)/~n + 1,0 and "r~(n)~n + ~ + 1 and the new links are l "+1'~ 1, in + 1,o..~r l" + l"0r~(.) + 1 . Of  these, 
l .+~,o is not  an edge link, since that  would contradic t  a s sumpt ion  (ii). It  r l ( n )  + 1 

also follows f rom (ii) that  0 "+1'~ is an edge vertex if and only if both  r l ( n )  + 1 
l n+l'~ and in+l,0 t)n+l,0 is a corner,  so that  rl(n)--I "rl(n) are edge links. In that  case, ,..,(.) 

n + l , 0  l n + l , 0  r~(n)--~ and .~(,,) are ma rked  by an arrow, and we set rl(n + 1 ) =  r l (n)+ 2 
0 "+1'~ is not  an edge and r z ( n + l ) = r z ( n ) + 2 .  If, on the other  hand,  ~,(n)+~ 

vertex, then in+ ~,o is not  an edge link, and we have the two possibilities " r l ( n )  
that  c~- + 1,0 ,,~(,) is an edge vertex or it is not. If  I"+1'0r~(,)-2 is an edge link, i.e., if 
r2(n) - rl(n) < k(n, 0) - 2, we can decide which is the case by looking only 
at the mark ings  of  the links in t?S, +~, as follows: If  I "+rl~n)_21'~ = Ir2(n)n,O 2 has no 

O n +  1 ,0  O n +  1 ,0  ar row or has an a r row point ing away f rom ~ , ( , )_  1, then is not  a V r l ( n  ) -- 1 

corner,  and we m a y  conclude that  l ~ ' _ ~  is an edge link, because otherwise 
On+ 1,o is a branch point,  which is excluded by assumpt ion  (iv). If, on the r l ( n  ) - -  1 

other  hand,  1.+~.o has an a r row point ing toward  0 "+~'~ then 0 "+1"~ is ~ r l ( n )  --  2 r l ( n  ) - -  i ,  r l ( n  ) - -  1 

a corner,  and  l n+l '~ is an edge link exactly if it is marked  by an arrow. r l ( n ) -  1 

Thus, we set ra(n+ 1 ) = r l ( n ) +  1 and r2(n+ 1 ) = r 2 ( n ) + 2  i f /n+ l ,0  i s  n o t  r l (n  ) - -  2 

marked  by an a r row or if it is ma rked  by an a r row point ing away  from 
O n + 1 ,0  I n + 1 ,0  I n +  t , 0  r~(.)_~ or if and are ma rked  by arrows point ing toward  I" r l ( n )  --  1 ~ r l ( n  ) -- 2 

0 n+l '~ Otherwise,  we set r l ( n +  1 ) = r l ( n  ) and r2(n+ 1 ) = r 2 ( n ) + 2 .  r l ( n )  -- 1 " 

Finally, if l" + 1,o is not  an edge link, then there is only one edge vertex r l ( n  ) -- 2 

in 5 ~176 namely  0 "'~ This is clearly the first vertex we encounter  in some r l ( n ) -  1" 

connected c o m p o n e n t  of the edge ne twork  of S, and  we color  it red. If  
l ,+~,o is an edge link, it is the first link encountered in some connected r l ( n ) -  1 

c o m p o n e n t  of the edge ne twork  of S, and we color  it (and the cor respond-  
ing link in q~(.+ 1)) red. Otherwise,  S .+1 is defined as above,  according to 
whether  t-  + 1,o -r~2(.)-~ is an edge link or not. 

This finishes the const ruct ion of S .+1 if l "'~ and  .,0 rl(n)--1 lr2(n ) do not  over- 
lap with opposi te  orientat ion.  
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n ,0  n,o has to be glued to lr2(n ), by Case l b  As mentioned above, lrl(,)_ 1 
assumption (iv). After doing this, we obtain a surface Sn+l with l(n + 1 )=_ 
l(n) + 1 boundary components, since S O splits into two pieces 50~247 and 
~l(,)+1 whose vertices are 0~i ~ (which is identified with ,,o n,o O r 2 ( n ) ) ,  O r l ( n )  + 1 . . . . .  ~ Z , n +  1 

n,o and 07 '0 ..... ,,o 0r1(,)-1 (which is identified with 0 "'~ ~ ~,o 0 r 2 ( n )  -- 1,  r2(n) + 11~ 0 r 2 ( n  ) + 2 , ' " ,  
n ,0  0k(,,o), respectively. In particular, L~~ contains no edge vertices, while 

n ,0  --,+cgt(")+ 1 consists entirely of edge vertices. Letting 0~1(,) be the first vertex in 
~n+0 1 and0~ '~ [or  0k(,,o ) . , o  if r l ( n ) =  1] be the first ;r in ~ , +  lc~l(")+ 1, wemay  
set r l ( n + l ) = l ,  r z ( n + l ) = k ( n + l , O ) = r 2 ( n ) - r l ( n ) ,  s ( n + l ) = 0 ,  and 

i i s(n+ 1, l(n+ 1)) =s(n).  Moreover, we let 5~ =50n,  for i =  1,..., l(n), and 
keep the ordering of the vertices. We have disregarded the case r l (n)= 
r2(n ) or r2(n ) - rl(n ) = k(n, 0) - 1. In the first case, Zao is empty, and in the 

opt(,)+ 1 is empty, and we should put l(n + 1)=/(n) .  second case ~ n +  
This finishes the construction of S, + 1 in case lb. 

Case 2. In this case there is no edge vertex in 500. Again we 
distinguish between two subcases: 

2a. Each link in ~ o  overlaps another link in 500 with opposite orien- 
tation. 

2b. There is a link in 5e ~ which does not overlap any other link in 
Lao with opposite orientation. 

Case 2a. From assumption (iv) and the fact that the plaquettes in S,  
containing a link or vertex in 500 belong to the same face in S, it follows 
that each link in 5e ~ overlaps a unique link in ~e ~ with opposite orienta- 
tion and that these links have to be glued together. Hence, there is a unique 
way of gluing the links in 5( '0 pairwise together. After doing this we obtain 

1 (~l (n)  =. ~)l(nn). the surface S,+1 with boundary components 501+1 = 50,,..., ~ , + 1  
Thus, l ( n + l ) = l ( n ) ,  and 50o+x is empty. Furthermore, we keep the 

cat(,+1) and set s(n+ 1, i)=s(n,  i), ordering of the vertices in s  1,--., ~ , +  t 

i = 1,..., l(n + 1). This finishes the construction of S, + 1 in case 2a. 

Case 2b. Consider the first link l in 500 which does not overlap any 
other link in ~e ~ with opposite orientation. Then a new plaquette has to be 
glued onto l as in case la. Thus, l ( n + l ) = l ( n )  and the loops 5e ~ n + l ,  
s ca/(,+ 1) +1- . . . .  ,+1 are, together with the ordering of vertices in LPn~+l,..., 
&a~(,+l) and s(n+ 1, i), i =  1 ..... l(n+ 1), defined as in case la. Clearly, the n + l  
vertices in o Sen+ 1 are those of 500, together with two new nearest neighbor 
vertices, P and Q, in the new plaquette. If neither P nor Q is an edge 
vertex, then there are no edge vertices in ~ o +  1, and we define 07 ,0 to be 
the first vertex in 5('~ and set r l ( n + l ) = l ,  r 2 ( n + l ) = k ( n + l , O ) =  
k(n, 0) + 2, and s(n + 1) = 0. If exactly one of the new vertices P and Q is 



Lattice Models of 2D Membranes 79 

an edge vertex, then it is the first edge vertex in some connected component 
of the edge network of S, and we color it red and define it to be the first 
vertex in o 5e,+ 1. Furthermore, we set rl(n + 1) = 2, r2(n + 1) = k(n + 1, 0) = 
k(n, 0) + 2, and s(n + 1 ) = O. 

Finally, if both P and Q are edge vertices, then, by assumption (i), the 
link connecting P and Q is an edge link and, clearly, it it is first edge link 
encountered in some connected component of the edge network of S. We 
then color this link red and let its endpoint be the first vertex in 5~176 
Moreover, we set r~(n+ 1 )=2 ,  r2(n+ 1 ) = k ( n  + 1, 0 ) -  1 =k(n, 0 ) +  1, and 
s(n + 1) = 0. This finishes the construction of S, + 1 in case 2b. 

Case 3. If all links in OS, are colored green, it is clear that S,  = S, 
and the construction is finished. Assume that this is not the case, and let 
io be the smallest index i, 1 ~< i~ l (n) ,  such that s contains at least one 

-, ~0 if link which is not colored green. We then let lo denote the link /s(,,i0)+l 
s(n, io)> 0. If s(n, io)= 0, we let lo = ,,io ,,~o l~ , where 0jo is the first corner in ~ 
if ~ contains a corner, whereas if ~ ; )  contains no corner, we let lo = l~,n'~~ 
where Jo is the smallest index j, 1 <~j<~k(n, io), such that l~ 'i~ and l~:~~ are 
overlapping with opposite orientation. The existence of such a Jo in this 
case is easily verified. 

We now once more thave to distinguish between two subcases: 

3a. lo is not incident with a corner, i.e., lo carries no arrow. 

3b. lo is incident with a corner. 

Case 30. Assume first that 0<s (n ,  io)<k(n,  i o ) - 1 .  Then the link 
n ,  i 0 ls~,,i0 ) is either green or has to be glued to another link, l ' r  lo, in 2~'2 by 

! _ _  n ,  i 0 definition of s(n, io). Suppose, in the latter case, that l - lk0 �9 Then, since 
t t ,  i 0 lo is not incident with a corner, it follows that Io is colored green if ls(,,io) 

is; otherwise, it has to be glued to the link lko"~~ ~ (see Fig. 14). 

,. n,io [n,i o 
ko-I _1 "[ko _: i 

J ,i ~ " in, i o 
[;tn,io) [o =,s(n,io)+ I 

v 

Fig. 14. Occurrence of case 3a. 

8 2 2 / 5 5 / 1 - 2 - 6  
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If lo is colored green or if k o -  1 r s(n, io) + 2, mod k(n, io), (i.e., if lo 
n ,  i0 and lko_ 1 are not neighboring links in &o~o), we define S,+1 to be equal to 

S,,  except that s(n + 1, io) is defined to be s(n, io)+ 1, which is less than 
k(n, i o ) = k ( n +  1, io). If k o -  1 =s(n, io)+2,  we let S,+1 be the surface 
obtained by gluing lo to lZ.0 i~ 1. Clearly, S,+1 has l (n)= l(n + 1) boundary 
components 5r and i i 5~,+1 = Y , ,  for i # i  o and 1 <~i<~l(n+ 1). The ver- 
tices in ~0 L.~,+ 1 are those of 5r except 07,; i~ 1, and ,,i0 0~(n.io)+ 1 has been iden- 
tified with ,.io ~,~o ~o ~, ,+1 io) = 0~0. We let 0~ be the first vertex in and set s(n + 1, 
s(n, i o ) -  1. The ordering of the other boundary components is kept, and, 
of course, s(n + 1, i )= s(n, i), for i r i o and 1 <~ i <~ l(n). 

If s(n, io) = 0, then it follows from assumption (iv) that lo = l~0 'i~ has to 
1 ''i~ and we define S,+1 as described above for the case be glued to Jo+l, 

k o - 1  = s(n, io)+ 2, the only difference being that s(n + 1, io) is defined to 
be zero. If k(n, io)=2,  then ~e~+ 1 is empty, in which case we have to 
relabel the boundary components in the obvious way. 

Finally, if s(n, io)=k(n,  io) 1, we claim that "'~~ ,,,i0 
- -  ls(n, io)+l = lk(-,i0) has to 

n ,  i0 be glued to ll �9 To see this, we first note that ~'~~ lk(.,~0) is either colored green 
or has to be glued to another link in S~ .  If it was green or had to be glued 
to a link different from .,~0 tl , we would conclude that any link in 5e2 was 
either colored green or had to be glued to a nonneighboring link in 
5r ~ But this contradicts the fact that S is planar with one boundary 
component, as an easy application of Euler's formula (2.6) shows. Thus, 

n, io n, io lk(,,eo) has to be glued to l 1 . 
Gluing these two links together, we obtain a subsurface S~ 1) of S with 

=~LOn ~ ' " ,  . . . .  n , boundary components 1 L~a~o-t, ~.e~+l, , q,t(.) and ~q,~l), where the 
links in , . ~ ( 1 )  a r e  those of Lf2, except l~ '~ and n,;0 lk(.,~0). By the argument just 
presented, we conclude that either ~(1) consists only of green links, in 

l " '~~ Gluing these links which case S('(. 1) = ~ ,  or 1~,~0 has to be glued to ~(.,i0)- 1. 
together, we obtain the surface S~ 2). We may continue in this manner until 
we obtain a subsurface S.+1 with boundary components Lf~+~ =5r 
~So- l=La~o-1  ' c~oZo+l_~+l , . . . ,  c~ot(,+l) ~at(,,) and ~9~ We 

n + l  ~'~" n + 1 - -  "e~ n + 1 ~ n  

choose an arbitrary ordering of ~e, set s(n + 1, io) = 0, keep the ordering of 
the other loops, and set s (n+ 1, i )=s(n , i ) ,  for i # i  o, and 1~<i~< 
l(n + 1) = l(n). 

This completes the construction of S, +1 in case 3a. 

Coso 3b. If the link l0 is green, we define S, +1 to be equal to Sn 
except that s(n + 1, io) = s(n, io) + 1. 

Assume now that lo is not green. Then there are two possibilities: 
Either a new plaquette has to be glued onto lo, and this plaquette has to 
be orthogonal or parallel with opposite orientation to the plaquette in S,  
containing lo, or it has to be glued to another link in 5~ Note that to 
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cannot be glued to a link in another boundary component  of Sn than 5 ~ ,  
since that would give rise to a handle in S, as is easily seen by using Euler's 
formula (2.6). 

If a new plaquette is glued onto lo we obtain a surface S,+1 with l(n) 
boundary components. The vertices in one of these are those of &o~, 
together with two new neighbor vertices in the new plaquette. We call this 
component  ~ ~  and let 0~ 'i~ be the first vertex in it. The other boundary 

1 ~,,~§ __~ . Then the new vertices are components are Y,, . . . ,  5e~ -1 . . . . . .  ~z(~  
,+1,0 and 0 "+1'~ It follows from assumptions (i) and (ii) that not s(n, io) + 2 s(n, io) + 3" 

(In+l'O (resp. n,+t ,o both of these vertices are edge vertices and that "~(n, io)+ 2 vs(~,io) + 3) is 
an edge vertex exactly if ln+1,o (resp. ln+m,o ~ is an edge link. Clearly, ~ s(n, io) + 1 "s(n, io) + 31 

this is equivalent to stating that 0 ~+1'~ (resp. n,+l ,o _ -,~o s(n, io) + l ,., s(n, io) + 4 - -  O s(n, io) + 2 ) is a 
corner, or that l "+1'~ (resp. 1,+1,0 (resp. s(n, io) + 1 "s(n, io) + 3) carries an arrow. If n- + 1,0 Us(n,  io) + 2 
0n+ 1,0 s(,,~0)+3) is an edge vertex, we set r~ (n+l )=rz (n+l )=s (n ,  io)+3 
[resp. =s(n, io)+2], whereas, if neither of the new vertices is an edge 
vertex, we set r l (n+l )=s(n ,  io)+2 and r2(n+l)=s(n,  io)+3. In both 

- ~ and cases we set s (n+l )=s(n ,  io). Moreover, we set 5 ~  
__ (fli+l and s (n+l , i )=s (n , i ) ,  for i = l  ..... i0--1,  whereas 5 a ~ + l - ~ ,  

s(n+ 1, i)=s(n, i -  1), for i=io ..... l(n+ 1) = l ( n ) -  1. 
Finally, if l 0 is to be glued to another link in 5r we define S ,+  1 

as described above in case 3a, depending on whether it is glued to the 
subsequent link or not. 

This completes the constructions of S, +~. 
]Let us note that the number  of links decorated by an arrow is 2N(S), 

the number of red links is bounded by the number of connected com- 
ponents in the edge network of S, which is clearly bounded by N(S)/2, and 
the same bound holds for the number  of colored vertices. The number of 
green links is of course tL~'[. Thus, since N(S)<~ hA, it follows, as men- 
tioned earlier, that the total number  of ways to color and mark the links 
in q~,..., qA is bounded by e cl6ln~EA a s  A ~ oe for some constant c. On the 
other hand, as we have been, the procedure described above to reconstruct 
S from ql ..... qA US unambiguous, except at those steps where case 3b above 
arises, and in which case there are a priori 2 d - 1  possibilities, namely 
either to glue onto lo one of the 2 ( d -  1) - 1 possible plaquettes, or to glue 
lo onto the subsequent link in 502, or to glue lo onto a link in 5~ which 
is not a neighboring link in L,a~. Furthermore,  the total number of steps 
required to reconstruct S is easily seen to be bounded by 4A, and the 
number  of times case 3b may arise is clearly bounded by 2N(S). From this 
the bound (8.11) follows. 

It remains to describe the modifications needed if assumption (iv) is 
dropped. We used this assumption in cases la, lb, and 2a. In case lb we 
used it to conclude that l "'~ and ,,o rl(n)--1 l~2(, ) have to be glued together if they 
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overlap with opposite orientation. It is not hard to check that the number 
of times this possibility arises is bounded by 2N(S), and each time we have 
two possibilities: to glue l n'~ n.o r~(n) 1 to lr2(,,), or to glue on a new plaquette in 
the same plane and with same orientation as the plaquette in S~ containing 
I n'~ Hence it is clear that this ambiguity only modifies f by a constant r l ( n  ) - -  1 "  

multiple. 
In case la we used assumption (iv) to exclude branch points, i.e., 

vertices shared by more than four plaquettes in the same face. If, for any 
vertex i, we define 

~ai - 4 if i is an interior vertex 
Oi l ai - 3 if i is a boundary vertex 

where ai is the order of i, then it follows from Euler's formula (2.6) that, 
for a planar surface S with b boundary components, 

Q ~ = 4 ( b - 2 )  (8.13) 
i t S  

Applying this formula to each face in S, it is easy to verify that the number 
of plaquettes in S containing a branch point is bounded by 40N(S). Hence, 
we can deal with the presence of branch points by coloring them blue, say, 
and adopting the convention that, once a branch point is encountered, all 
the plaquettes containing this vertex are glued on at once. 

Finally, we used assumption (iv) in case 2a to conclude that if 50o 
consists only of non-edge links, with each link overlapping some other link 
in 50o with opposite orientation, then the links in 5 ~ have to be glued 
pairwise together and this gluing is unique. If we allow overlapping pla- 
quettes in a face, this does not necessarily hold anymore. In particular, a 
given link in 50o may overlap several other links in 50o with opposite 
orientation. This problem may be overcome by using the fact that if 50o is 
an oriented loop lying in some 2-plane in 77 d, then it is the boundary of at 
most one flat, bounded, oriented surface without branch points. In order to 
apply this result to 50o, we must ensure that 50o is the boundary of a piece 
of a face containing no branch points. This can be ensured as follows: In 
case the face in S containing 50o has no boundary components other than 
50,,..., and no branch points other than those contained in S, ,  there 
is a unique way of finishing the construction of this face by gluing the 
unique bounded flat surface with boundary 50o onto S, ,  as mentioned 
above. If, on the contrary, the face containing 50o contains more boundary 
components than 1 ~t~,) 50 ...... or it contains other branch points than 
those contained in S, ,  there exists a (nonunique) straight strip of plaquet- 
tes which connects 50o to either a new boundary component or to a new 
branch point. We then choose to color the link in 50o to which this strip 
is glued yellow, say. Thus, once case 2a is encountered and &,q0 contains 
yellow links, we obtain Sn+~ by successively gluing plaquettes in a strip 
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starting at the first of those yellow links, until a blue vertex or a red vertex 
or link appears. We then choose this colored (red or blue) vertex or the 
endpoint of the red link to be the first one in the boundary component 
A ~176 + ~ containing it and keep the ordering of ~ n l  ~ ~ n l  + I , ' " ,  ~nCPl(n) :.~ 

Ao~<,+~) We are then no longer in case2a, and the construction may r t + l  �9 

proceed. This modification of the construction only requires coloring 
yellow a number of links which is bounded by the sum of the number of 
branch points and the number of boundary components in the faces of S. 
Hence, it is bounded by 4N(S), which is easily seen, and it follows that the 
desired bound (8.ll)  can still be maintained. 

This completes the proof of Lemma 16. I 

Remark. For the bound (8.11) to hold it is clearly not necessary to 
keep A '~ fixed, but sufficient to require that ~ contain some fixed link or 
point in 7/d, as the proof shows. 

Let now (E, 5r be a connected edge network with base loop LP, and 
let R(E, ~ )  be a surface with boundary A ~, whose edge network is E. 
Clearly, (E, Y)  is determined by the part of R(E, ~ )  consisting of 
plaquettes containing edge vertices. It is easy to verify that the number of 
such plaquettes is ~< C~ IE[ for some constant C~ independent of E. Note 
also that the only stages in the construction of a given surface described 
above at which a plaquette without edge vertices is added is when case 2a 
or case 2b arises. Thus, in order to estimate 

na(K) = # {(E, s I x E =~', IEI = K, N(E) <~ 6 IEI } 
we may start with a sequence of ~< C~K abstract plaquettes, mark them as 
previously, and apply the same construction, except that each time case 2 
arises, i.e., s contains no edge vertices, we leave ~qo out of further 
consideration, or, alternatively, we just glue an arbitrary flat piece of 
surface (possibly containing branch points) with boundary ~ o  to Sn. In 
this way we obtain 

n~ <~ const - e f ( ~ ) K  (8.14) 

where f(6) is as in Lemma 16. 
Given/31 > 0, choose 60 small enough such that f(6o) </7,.. Then, for 

fixed x ~ Z d, 

Z - 81 [El -- floN(E) e 

(E , .~ )  
. . ~ x  

( E , ~ q ' ) , ~  x (E, r .L-~ x 
N( E) < ~0 IEi N( E) > 60 IE[ 

K = I  K = I  
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where we have used (8.14) with 6 = bo, and that 

# { (E, ~ ) [ x  6 ~q~, ]El = K} = nl(K) ~< cst- e U(~)K 

since N ( E )  <<. ]El. Thus, it follows that 

e ,6'l IEI - floN(E) ~ O0 

(E, 5~ ~ ~ x 

provided tim + f l o b o > f ( 1 ) ,  which proves Lemma 11. 
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